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ABSTRACT: A disposable colorimetric sensor array (CSA)
made from printing various chemically responsive dyes was
combined with a hand-held device for on-site assessment and
monitoring of the freshness of five meat products: beef, chicken,
fish, pork, and shrimp. The hand-held device takes advantage of
an on-board diaphragm micropump and a commercial 1D
CMOS camera (CIS) which enables the real-time collection of
colorimetric data. The sensor array shows excellent sensitivity to
gaseous analytes, especially amines and sulfides at low ppb
levels; excellent discrimination among meat volatiles in terms of
meat type and storage time was demonstrated with multiple chemometric approaches including principle component analysis,
hierarchical cluster analysis, and support vector machine analysis. This optoelectronic nose proves to be a promising supplement
to other available techniques for meat product inspection.
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The quality control of meat products has attracted
considerable attention during the past decade and has

strong potential for the application of new chemical sensing
techniques.1−3 The primary factors that determine meat
freshness during storage are the concentrations of sulfurous
compounds and biogenic amines, which are two major
metabolites from the microbial decarboxylation of amino
acids.3,4 The degree of meat deterioration and bacterial
contamination can therefore be indirectly determined by
measuring the emission of relevant volatile organic chemicals
(VOCs).5,6 Numerous analytical techniques for monitoring
meat spoilage have been developed, including FT-IR
spectrometry,7,8 HPLC,9 GC-MS,10,11 and chemifluores-
cence.12−14 Most of those methods, however, demand
sophisticated instrumentation, lack portability, or require
time-consuming sample preparation. There remains therefore
an urgent need for new methods for simple, rapid, and sensitive
sensing of sulfurous and amine volatiles for application to
assessment of food and especially meat freshness.
One of the alternative approaches for effective sensing of

meat freshness is an electronic nose,15 i.e., the use of the
composite response of an array of, typically, metal oxide or
conductive polymer sensors.16,17 For nearly all electronic nose
technologies, the sensors’ responses depend primarily upon
physical sorption of analyte molecules onto or into the sensor
elements that induce changes in the weight or conductivity.
Such classes of sensors, however, suffer substantial drawbacks,
including poor chemical specificity, sensor drift, and sensitivity
to changes in humidity.15,16,18 Those limitations also make
these sensors less reliable for discrimination among mixtures
with highly similar composition.

In the past decade, our group has developed colorimetric
sensor arrays (CSAs) as a novel type of optoelectronic nose for
the detection of various analytes.18−23 The CSAs are distinct
from traditional electronic noses that solely rely on physical or
nonspecific intermolecular interactions and instead probe a
wide range of chemical reactivity based on the use of chemically
responsive dyes in hydrophobic matrices.24,25 Digital imaging of
the color changes of the array enables the identification of a
composite pattern of responses as the “fingerprint” for a given
odorant compared against other similar ones. Our colorimetric
sensor array technique has seen successful applications relevant
to the food industry, including identification vapor phase or
aqueous solutions of different brands of coffee,26 beer,27 soda,28

and sweeteners29 and the rapid identification of cultured
bacteria and fungi.30,31

The design of the colorimetric sensor array in this work
utilizes metal ion chromogens (e.g., Pb(II) plus a pH indicator)
to target emitted sulfides, and Brønsted/Lewis acidic or basic
dyes (e.g., bromocresol green) to detect acidic or basic analytes,
especially biogenic amines. We have very recently reported the
use of this 20-element sensor array for the quantification of
trimethylamine and the simulated diagnosis of trimethylami-
nuria (TMAU, also known as “fish malodor syndrome”).32

Herein, we described another possible application of the same
colorimetric sensor array in the determination of meat
freshness. To make it a fully portable and field-deployable
technique, the sensor array was integrated with a hand-held gas
analyzer33 as the sensing platform (Figure 1a) to perform all
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colorimetric measurements. As a result, we demonstrate the
successful quantification of four representative sulfides and
amines, along with the precise identification spoilage of five
meat products vs time.

■ EXPERIMENTAL SECTION
Reagents and Materials. Five kinds of raw meat, including beef

(sirloin steak), chicken (thigh), fish (cod fillet), pork (loin chops), and
shrimp, were purchased from a local supermarket and tested during
storage. All reagents were analytical-reagent grade, purchased from
Sigma-Aldrich, and used without further purification.
Gas Analyte Generation and Calibration. All individual gas

analytes at their selected concentrations were prepared by mixing the
gas stream of prediluted analyte with dry and wet N2 using MKS digital
mass-flow controllers (MFCs) to reach the desired concentrations and
relative humidity (see Figure S1, Supporting Information, SI). Before
each calibration, gas flow was run for 30 min to achieve a stabilized
concentration; for calibration, analyte concentrations were measured
using in-line FTIR analysis with a MKS Multigas Analyzer (model
2030). Effects of humidity were not investigated in this study, as the
insensitivity of these colorimetric sensors to changes in humidity was
well-established in our previous work.34

Meat Storage and Sampling Protocol. 0.5 g meat samples were
placed in a sealed 20 mL scintillation vial to accumulate volatiles prior
to freshness measurements. Each meat sample was stored either in a
kitchen refrigerator (2 ± 1 °C) or at room temperature (24 ± 1 °C)
for length of time varying from 0 to 96 h. The sensor array was
exposed to the ambient air to equilibrate for 2 min before sniffing; the
array was then exposed to meat volatiles for another 2 min. The
headspace gas of the vial was sampled into the sensor array cartridge
through a short Teflon tube at a flow rate of ∼580 cm3/min (sccm),
during which the vial was open to the ambient environment. Before-
and after-exposure images of the array were collected (Figure 1a) using
the hand-held analyzer. Three independent trials were run for each
meat sample.
Sensor Array Preparation. The linear colorimetric sensor arrays

were printed as per details in recently published papers,35,36 except
that the polypropylene membrane strips were first solvent-welded to
cartridges using CHCl3 to eliminate potential contaminants from
adhesives. Twenty sensor elements were immobilized in matrices
made of organically modified silicates and 2-methoxyethanol, and
printed on the polypropylene substrate at 2 mm center−center
distance (Figure 1b and c) using an array of floating stainless steel
rectangular pins. Once printed, the arrays were dried under vacuum for
2 h at room temperature, and stored in N2-filled aluminized Mylar
bags before any measurement was performed. The chemical dyes and
formulations used in each spot are listed in SI Table S1.
Raw Data Process. Analyte response was calculated from the

differences between the observed red, green, and blue (RGB) values
for each sensor element before and after exposure to meat volatiles.

For visualization purposes only, all color difference maps herein are
displayed by scaling a relevant color range from 3-bit (i.e., 3−10) to
the 8-bit color scale (i.e., 0−255). Signals for each channel were
defined as the difference between each analyte trial measurement
(analyte-n) and the averaged nonexposed controls (i.e., Ranalyte‑n −
Rcontrol‑avg), and noise was defined as the standard deviation among the
controls (i.e., σR2 = Σn(Rcontrol‑n − Rcontrol‑avg)

2/(N − 1)). The signal-to-
noise ratio (S/N) was calculated for each data channel and
incorporated in the final database for statistical analyses.

Database Analysis. Two unsupervised statistical methods,
principal component analysis (PCA) and hierarchical cluster analysis
(HCA), were performed for database clustering using MVSP software
(Kovach Computing Services, Pentraeth, Isle of Anglesey, UK); in all
cases, minimum variance (i.e., “Ward’s Method”) was used for HCA
clustering. For quantitative cross-validation, predictive classification
was carried out using support vector machine (SVM) analysis (SI
Tables S3 and S4).

■ RESULTS AND DISCUSSION

While there have been some limited studies of colorimetric
sensor arrays for monitoring specific meat quality,6,37−40 the
previous work has been limited by lack of sensitivity (ppm
LODs), lack of portability, limitation of analytes (only amines
or aldehydes were monitored), and limitation to a single meat
(either chicken or pork).
As we demonstrate below, we have developed a portable

hand-held, self-contained reader/analyzer that permits us to
collect in situ and real-time data of meat spoilage. Our sensor
array has considerably greater chemical diversity and is
consequently more versatile and broader in its responses than
prior work:6,37−40 our array responds to a variety of analytes
(e.g., sulfides, amines, and other analytes as well), rather than to
a single class of analytes; consequently, our sensor arrays have
much better ability to discriminate among subtle differences
among meat samples. In addition, because of better imaging
and superior printing methods, we attain higher sensitivity
(LOD < 35 ppbv for all individual gas analytes). Finally, we
demonstrate the versatility of our device and are able to analyze
and differentiate spoilage in five meat products rather than only
a single meat.

Sensor Response to Individual Gas Analytes. The
capabilities of the sensor array to detect VOCs associated with
meat spoilage were investigated first, prior to the measurement
of meat samples. Specifically, we measured array response to
four relevant gases released by spoiled meats: hydrogen sulfide,
dimethyl sulfide, trimethylamine (TMA), and cadaverine
(CAD). Figure 2 shows the color difference maps from
exposures to a series of concentrations of these gases after 2
min exposure; easily visible color changes were observed for all
analytes at sub-ppm concentration, and the patterns allow for
easy differentiation even by eye. For the two sulfides (Figure 2a
and b), the sensor array response largely arises from metal-
containing dyes (spots 14−17 and 19) and reflects metal ion
ligation of the sulfides (i.e., Lewis acid−base interactions). In
comparison, sensor response to amines (TMA or CAD) mainly
comes from vapochromic species (spots 1−2), pH indicators
(spots 4−6 and 8−11), as well as metal-containing dyes (spots
14 and 16−18), indicating the significant analyte-induced
changes in local polarity and Brønsted basicity.
Overall sensor response (i.e., Euclidean distance (ED) from

the changes in all 60 RGB values from 20 sensor elements) for
each of these four VOCs as a function of concentrations is
monotonic and shown in the SI Figure S2. Limits of detection
(LOD) for each of these gases are well below 0.25 ppm, which

Figure 1. Sensing device assembled from a colorimetric sensor array
inside a hand-held analyzer. (a) Gas sampling from a meat sample into
the hand-held analyzer (5.0 × 3.7 × 1.6 in.3). (b) Top view of the 20-
element colorimetric sensor array mounted in a polycarbonate
cartridge (3.1 × 1.1 × 0.4 in.3). (c) Side view of the cartridge.
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is roughly the lower limit of concentration that can be reliably
delivered by our gas mixing apparatus. Extrapolation of the
calibration curves gives LODs of 8 ppb for hydrogen sulfide, 33
ppb for dimethyl sulfide, 4 ppb for TMA, and 7 ppb for CAD,
with estimated relative errors in the LODs < 10% (Table S2
and Figure S3, SI).
The array response to amines is essentially reversible, with

the response to sulfides. In our opinion, good reversibility of
any sensor array is actually a double-edged sword: the
advantage of high reversibility is that one can monitor in real
time changes in analyte concentrations (up or down) as soon as
equilibration occurs. For some toxic gases (including trimethyl-
amine), we have previously shown that our colorimetric sensor
arrays are generally reversible and equilibrate typically within 2
min, often in 10 s, as we have previously published.32,34 The
disadvantage of reversibility, however, is that there is no
improvement in sensitivity with increased dosage. Past
experience has taught us that our sensor arrays are best
thought of as a “chemical fuse” in analogy to an electrical fuse:
it is reversible up until a threshold of too high a concentration
(which would take too long to flush away) or too aggressive an
analyte (which reacts essentially irreversibly with the colorants).
Since our colorimetric sensor arrays are meant to be disposable,
irreversibility presents no difficulty, in contrast with traditional
electronic nose technology where sensor drift remains highly
problematic.16

Statistical Analyses on Four Gas Analytes. To evaluate
the ability of our sensor array to discriminate among single
analytes, three types of statistical analyses were performed on
the collected sensing data: hierarchical cluster analysis
(HCA),41 principal component analysis (PCA),42 and support
vector machine (SVM)43 analysis. HCA and PCA are both
unsupervised exploratory data analyses, i.e., “clustering”: HCA
is commonly used to evaluate the “dissimilarity” among data
points and cluster them in multivariate vector space, while PCA
is to estimate the dimensionality of the data and attempts to
project data into as few dimensions as possible.
The resulting HCA dendrogram of four VOCs at six

concentrations of each plus a N2 control in triplicate replicates

is shown in Figure 3. Each analyte at each concentration is
discriminable without confusions or errors. In the cases of

TMA and CAD, completely separate clusters of clusters are
seen for each analyte in the concentration range measured. For
the sulfide a supercluster is formed, separate from the amines,
and there are no confusions between H2S and (CH3)2S and any
given concentration.
The PCA score plot based on the first two principal

components (PCs) displays a similar pattern of clustering
results as compared to HCA with no overlap among clusters
(SI Figure S4a). The scree plot (SI Figure S4b) shows that 13
dimensions are needed to account for >95% of the total
variance of the data, which reflects the broad chemical diversity
present among the sensor elements. Given the limited set of
analytes (albeit tested over a significant range of concen-
tration), the scree plot does not provide a thorough probe of
the dimensionality of the sensor array.
SVM analysis offers a supervised and more quantitative

method for data classification, which aims to classify new
entries into the known and predetermined groups of data
points. The results of SVM analysis using a standard leave-one-
out permutation model are shown in SI Table S3. All the
groups give 100% classification accuracy, except for one error
from trials of 0.25 ppm of CAD, which is mistaken for the
group of 0.25 ppm TMA; i.e., the overall cross-validation
accuracy is above 98.6%.

Figure 2. Sensor array response to (a) H2S, (b) (CH3)2S, (c) TMA,
and (d) CAD at concentrations ranging from 0.25 to 10 ppm; patterns
are averages of 3 independent trials. For visualization, the color range
is expanded from 3 to 8 bits per color (i.e., the RGB color range of 3−
10 was expanded to 0−255).

Figure 3. Dendrogram showing hierarchical cluster analysis of 4
relevant gases released by spoiled meat. 75 trials in total are shown
over 0.25−10 ppm concentration range plus a N2 control. No
confusions among triplicate trials are observed.
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Sensor Response to Meat Samples. Having confirmed
our sensor array’s low limits of detection and recognition
toward individual analytes, we employed the sensing device to
monitor the real-time emissions of the complex odor mixtures
from meats as they spoil. Five meat products were monitored
for 96 h both at room temperature (24 ± 1 °C) and while
refrigerated (2 ± 1 °C). Color difference maps of the volatiles
released by these five meats are shown in Figures 4 and S5).
The array response to the volatiles released by the meat

samples are mainly dominated by biogenic amines for samples
stored up to 4 days, while sulfides appear to be released after 48
h storage, as indicated by the response in metal-containing
chromogens (spot 15, Pb(OAc)2, and spots 19−20, HgCl2).
Response curves of the five meat products as a function of
storage time are shown in Figure 5. As one would expect, the
overall sensor response grows significantly faster for meats
stored at room temperature compared to refrigerated samples.
Even from the refrigerated samples, however, growth in the
concentration of volatiles is observed by the sensor array over
time (Figure 5b). The array response increases more than 10-
fold faster at 25 °C than at 2 °C. The magnitude of overall
sensor response to meat vapors with the same storage duration
at 25 °C follows the order fish > shrimp > chicken > pork >
beef, which is determined by differences in the protein
compositions of the five meats and probably more importantly,
by differences in the bacteria strains29,30 that are growing on the
meats during spoilage.1,3

Statistical Analyses on Meat Samples. To better
illustrate the sensor’s capabilities to quantitatively assess meat
freshness, PCA, HCA, and SVM analyses were conducted on
the database collected for spoilage of meat samples. HCA
shows the clustering of the data with three distinct classes of
responses, as shown in Figure 6. The lowest sensor array
response cluster is labeled “fresher” and corresponds to the
control, 0 h storage of all five meats, 12 h storage of four meats
other than chicken, and 24 h storage of beef and pork. The
middle response cluster, labeled “less fresh”, contains 24 or 48 h
storage of most meats and 12-h-old chicken. The most
responsive cluster, “spoiled”, is formed from the 72 and 96 h
storage of most of the meats. Overall, there is excellent
clustering among the triplicate samples of each meat at each
time point, except for two subgroups containing 12 and 24 h
storage of beef and 72 and 96 h storage of shrimp, respectively.
The grouping accuracy achieved by HCA is therefore ∼90%

among the triplicate trials of five meats with six storage
durations plus a control.
PCA demonstrates that the database has a relatively high

dimensionality. For the sensor responses to the 5 meat
products over 6 different storage times, 9 dimensions are
required to capture 90% of the total variance and 14
dimensions for 95% (SI Figure S6). A PCA score plot based

Figure 4. Sensor array response to five meats at 24 and 2 °C during 48 h storage. Upper row: (a) beef, (b) chicken, (c) fish, (d) pork, and (e) shrimp
at room temperature (24 ± 1 °C); lower row: (f) beef, (g) chicken, (h) fish, (i) pork, and (j) shrimp under refrigerated conditions (2 ± 1 °C);
triplicate trial averages. For visualization, the color range is expanded from 3 to 8 bits per color (i.e., RGB color range of 3−10 expanded to 0−255).

Figure 5. Response curves of sensor arrays to five meat products
stored (a) at room temperature (24 ± 1 °C) and (b) in the fridge (2 ±
1 °C). Measurement of each meat sample was replicated in triplicate
with 2 min exposures.
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on the first 3 PCs (which only captures >77.5% of the total
variance) shows excellent clustering with again 3 distinct
superclusters (labeled fresher, less fresh, spoiled in SI Figure
S6).
As with the previously discussed SVM analysis of the

individual gas analytes, a leave-one-out permutation cross-
validation of the database was carried out. The cross-validation
gave perfect identification of all 31 classes (i.e., 5 meats at 6
times plus the air control) with no errors in this more
quantitative and predictive classification, i.e., an error rate of
<1% (SI Table S4).
Reproducibility of Meat Sample Measurements. To

evaluate the consistency of our colorimetric sensing method,
reproducibility studies were performed on three separately
prepared print batches of the sensor arrays by comparing the
responses both to beef and to shrimp. In addition, comparisons
were made among three separate purchases (made over a one-
month period) of beef and of shrimp, each tested with sensor
from the same print batch. For all the reproducibility studies,
0.5 g of each meat product was stored at room temperature for
48 h, and measurements were done in triplicate.
Reproducibility in the array printing were evaluated from the

average Euclidean distances from triplicate trials (cf. SI Figure
S7 and Table S5): these were found to be 166.4 ± 5.8 and
258.1 ± 10.4 as measured by three print batches of arrays on
single purchases of pork and shrimp, respectively. For
comparison, the reproducibility of the source meats were

evaluated from three separate purchases but measured with
arrays from a single print batch: 169.5 ± 11.9 and 254.6 ± 19.0,
for pork and shrimp, respectively. That is, the differences in the
printing of the arrays are smaller than the differences among the
meats from separate purchases.

■ CONCLUSIONS

We have developed a portable optoelectronic nose that
combines a disposable colorimetric sensor array and a hand-
held gas analyzer and used it for rapid sensing of the freshness
of common meat products. The introduction of metal ion
chromogens into the sensor array greatly improved sensitivity
toward representative sulfides and biogenic amines, with the
detection limits at low ppb levels. The hand-held analyzer
permits accurate discrimination among the headspace of
samples of five different meats as a function of storage periods
from freshly purchased to 4 days with very high accuracy. We
have demonstrated excellent repeatability from both separate
batches of sensor array printings and from multiple purchases
over a period of a month of the same meat product. Our device
may find applications in the determination of meat freshness
and serve as a useful supplement to other methods of food
safety inspection.
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