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The development of a low-cost, sensitive colorimetric
sensor array for the detection and identification of volatile
organic compounds (VOCs) is reported. Using an array
composed of chemoresponsive dyes, enormous discrimi-
natory power is possible in a simple device that can be
imaged easily with an ordinary flatbed scanner. Excellent
differentiation of closely related organic compounds can
be achieved, and a library of 100 VOCs is presented. The
array discriminates among VOCs by probing a wide range
of intermolecular interactions, including Lewis acid/base,
Brønsted acid/base, metal ion coordination, hydrogen
bonding, and dipolar interactions. Importantly, by proper
choice of dyes and substrate, the array is essentially
nonresponsive to changes in humidity.

Array-based vapor sensing has emerged as a potentially
powerful approach toward the detection of chemically diverse
analytes. Based on cross-responsive sensor elements, rather than
specific receptors for specific analytes, these systems produce
composite responses unique to an odorant in a fashion similar to
the mammalian olfactory system.1 In this design architecture, one
receptor responds to many analytes and many receptors respond
to any given analyte. A distinct pattern of responses produced by
the array provides at least the possibility of a characteristic
fingerprint for each analyte. In this paper, we provide a detailed
account of the ability of our colorimetric sensor arrays to
distinguish among a large family of volatile organic compounds
(VOCs); earlier communications have provided related, but much
more limited, data and analysis.2 Our primary purpose here is to

discuss selectivity; issues of sensitivity will be discussed separately
in future reports.

Previous array technologies for such electronic noses generally
rely on multiple, cross-reactive sensors based primarily on changes
in properties (e.g., mass, volume, conductivity) of some set of
polymers or on electrochemical oxidations at a set of heated metal
oxides. Specific examples include conductive polymers and
polymer composites,3 polymers impregnated with a solvatochro-
mic dye or fluorophore,4 mixed metal oxide sensors,5 and polymer-
coated surface acoustic wave devices.6 In these reports, it naively
appears that a high level of sensor diversity has been examined
with each approach; on closer examination, however, this proves
not to be the case and the interactions of such sensors with
analytes are nearly always limited to the weakest and least specific
of intermolecular interactions, primarily van der Waals and
physical adsorption interactions between sensor and analyte. We
believe this to be a fundamental flaw in the development of
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chemical sensors with both high sensitivity and high selectivity.
Despite some successes with prior electronic nose systems, the
limited range of sensor-analyte interactions limits both their
sensitivity for detection of compounds at low concentrations
relative to their vapor pressures and their selectivity for discrimi-
nation between compounds; the latter proves especially problem-
atic in interference from the large environmental changes in
humidity.

Design of a Colorimetric Sensor Array. The detection and
identification of chemicals fundamentally is supramolecular chem-
istry and intrinsically relies on the interactions between molecules
and atoms. The classification of intermolecular interactions is well
established (Figure 1) and involves bond formation and coordina-
tion, acid-base interactions, hydrogen-bonding, charge-transfer
and π-π molecular complexation, dipolar and multipolar interac-
tions, and van der Waals interaction and physical adsorption. The
use of an array of sensors that probes this full range of
intermolecular interactions is essential to the further development
of array technology.

In addition, the development of new sensor technology faces
the dilemma of trying to create sensors that are both increasingly
sensitive and increasingly robust (i.e., stable to exposure to
analytes or the environment). Beyond a certain point, the more
sensitive a sensor becomes, inherently the less robust it can be.
The path around this dilemma is the development of disposable
sensors, which are not integrated to the readout device, thus
unlinking the opposing demands.

A final consideration is the practical issues of cost and
portability. We would argue that few technologies are as advanced
or as inexpensive as visual imaging (e.g., digital cameras and
scanners). This reflects, of course, our own species’ visual
orientation.

In merging these three considerations, we have previously
reported a general approach to an “optoelectronic nose” based
on the colorimetric array detection using a chemically diverse
range of chemically responsive dyes.2,7 Fundamentally, we convert
olfactory-like responses to a visual output. In many ways, our
colorimetric sensor array revisits the earlier, pre-electronic era
of analytical chemistry,8 updated by the addition of modern digital
imaging and pattern recognition techniques. Here we present
extensions of our colorimetric sensor array and explore its
application to the determination of chemical vapors.

The design of an expanded colorimetric sensor array is based
on two fundamental requirements: (1) each chemically responsive
dye must contain a center to interact strongly with analytes, and
(2) each interaction center must be strongly coupled to an intense
chromophore. The first requirement implies that the interaction
must not be simply physical adsorption, but rather must involve
other, stronger chemical interactions. Chemoresponsive dyes are
those dyes that change color, in either reflected or absorbed light,
upon changes in their chemical environment. The consequent dye
classes from these requirements are (1) Lewis acid/base dyes
(i.e., metal ion-containing dyes), (2) Brønsted acidic or basic dyes
(i.e., pH indicators), and (3) dyes with large permanent dipoles
(i.e., zwitterionic solvatochromic dyes) (Figure 2). The importance
of strong sensor-analyte interactions is highlighted by recent
indications that the mammalian olfactory receptors are, in many
cases, metalloproteins and that odorant ligation to the metal center
is intrinsic to the mechanism of action.9

EXPERIMENTAL SECTION
Colorimetric sensor arrays are commercially available from

ChemSensing, Inc., Northbrook, Illinois (www.chemsensing.com),
part number CSI.031. The VOC analytes used in this study were
reagent grade and were used as received, except for alkenes, each
of which was passed through an alumina column.

For all sensing experiments, each sensor array was held in a
glass and Teflon cell with the array imaged through optical glass
by an Epson Perfection 1670 flatbed scanner to acquire the
“before” image. Above the array, a piece of filter paper was
suspended without contact. An analyte was then placed on the
filter paper (5-20 µL for a liquid sample or 300 mg for a solid
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S.; Jüngst, J.; Goschnick, J.; Everhard, D. Sens. Actuators, B 2000, 65, 247-
249. (g) Getino, J.; Arés, L.; Robla, J. I.; Horrillo, M. C.; Sayago, I.; Fernández,
M. J.; Rodrigo, J.; Gutiérrez, J. Sens. Actuators, B 1999, 59, 249-254. (h)
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Figure 1. Intermolecular interactions on a semiquantitative energy
scale.
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sample) and the cell was sealed; because excess liquid or solid
analyte has been added to the sealed cell, at equilibrium the cell
is saturated with the full vapor pressure of the analyte at room
temperature. A total of 100 VOCs were exposed to arrays at 295
K; triplicate arrays were used for each analyte to test the
reproducibility of the array response. The “after” images are then
acquired after equilibration (equilibration determined by repeated
scans at longer times). Response time is mass transport limited
in these experiments. In flow systems at 500 mL/min, equilibration
of the arrays is complete in 2 min even at 1 ppmv analyte
concentration. Difference maps are obtained by taking the differ-
ence of the red, green, and blue (RGB) values from the center of
every dye spot (∼300 pixels) from the “before” and “after” images.
Averaging of the centers of the spots avoids artifacts from
nonuniformity of the dye spots, especially at their edges. Subtrac-
tion of the two images yields a difference vector of 3N dimensions
where N is total number of spots; for our six by six array, this
difference vector is 108 dimensions (i.e., 36 changes in red, green,
and blue color values), each dimension ranging from -510 to
+510). The difference vectors are provided in the Supporting
Information. These subtractions can be done with Photoshop or
with a customized software package, ChemEye (ChemSensing,
Inc.). The difference vector is conveniently visualized as a map
of the absolute values of the color changes of the after minus the
before images of the same array of dyes (as shown in Figure 3).

Chemometric analysis on the difference vectors was carried out
using Multi-Variate Statistical Package (v. 3.1, Kovach Computing).

RESULTS AND DISCUSSION
Sensor Array. As discussed earlier, the required dye classes

for an optoelectronic sensor array include (1) Lewis acid/base
dyes (i.e., metal ion-containing dyes), (2) Brønsted acidic or basic
dyes (i.e., pH indicators), and (3) dyes with large permanent
dipoles (i.e., zwitterionic solvatochromic dyes) (Figure 2). For
recognition of analytes with Lewis acid/base capabilities, the use
of porphyrins and their metal complexes is a natural choice.
Metalloporphyrins are nearly ideal for the detection of metal-
ligating vapors because of their open coordination sites for axial
ligation, their large spectral shifts upon ligand binding, their
intense coloration, and their ability to provide ligand differentiation
based on metal-selective coordination. Importantly, they are cross-
responsive dyes, showing responses to a large variety of different
analytes to different degrees and by different color changes.
Common pH indicator dyes change color in response to changes
in the proton (Brønsted) acidity or basicity of their environment.
Solvatochromic dyes change color in response to changes in the
general polarity of their environment, primarily through strong
dipole-dipole and dispersion interactions. To some extent, all dyes
inherently are solvatochromic, although obviously some are more
responsive than others.

The interference of atmospheric humidity on sensor perfor-
mance is a serious problem with previous electronic nose
technology. The high concentration of water vapor in the environ-
ment and (even more importantly) its large and changeable range
make the accurate detection of volatile compounds at low
concentration exceptionally challenging. Water vapor ranges in
the environment from <2000 to >20 000 ppmv; if one is interested
in few ppmv, and even few ppb, concentrations of VOCs, even a
very low level of interference from water is therefore intolerable.
Physisorption of molecules on surfaces is dominated by the
relative hydrophobicity of the adsorbate and adsorbent. It should
be no surprise, therefore, that a very serious weakness in prior
electronic nose technology is sensitivity to changes in humidity.

Because the colorimetric sensors in the array have been
selected from hydrophobic, water-insoluble dyes and have been
contact printed as nonaqueous, hydrophobic solutions onto

Figure 2. Disposable colorimetric sensor array, its dye classes, and
some representative examples drawn to scale.2

Figure 3. Image of the 36-dye colorimetric sensor array before
exposure (left) and after exposure to decylamine (middle) after
equilibration at full vapor pressure at 295 K. A subtraction of the two
images yields a difference vector in 108 dimensions (i.e., 36 changes
in red, green, and blue color values, each ranging from a minimum
of -510 to +510); this vector is usefully visualized using a difference
map (right), which shows the absolute values of the color changes.
For purposes of display to increase the color palate, the color range
of the difference map has been expanded from 6 to 8 bits per color
(i.e., an RGB range of 4-67 is shown expanded to 0-255).
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hydrophobic substrates, these arrays are essentially impervious
to changes in relative humidity (RH), as seen in Figure 4. The
arrays were exposed to water vapor from pure water (RH 100%)
and from saturated salt solutions whose water vapor pressures
ranged from 11 to 94% RH:10 the dyes in the sensor array (Figure
4) are unresponsive to water vapor. Similarly, the response to other
analytes is not affected by the presence or absence of RH over
this range. In fact, it is possible to use similar arrays directly in
water for the sensing of dilute aqueous solutions of organic
compounds.2f

Discrimination of VOCs. To demonstrate the ability of the
sensor array to discriminate among analytes, 100 different volatile
organic compounds (Table 1) were tested representing common
organic functionalities including primary, secondary, tertiary, and
aromatic substituents of amines, arenes, alcohols, aldehydes,
carboxylic acids, esters, hydrocarbons, ketones, phosphines, and
thiols. Experiments were run until full equilibration was demon-
strated by comparison of repeated scans. The response of the
array is mass transport limited; interaction times (ligation, proton
transfer, etc.) are much faster than the typically observed array
response. Under proper conditions of rapid gas flow, equilibration
of the array occurs within 2 min, even at ppmv analyte concentra-
tions; under static diffusion conditions, equilibration (especially
with low volatility analytes) can take 1 h or more, depending of
course on the specific cell configuration.

Every spot in the array is uniquely described by RGB color
values; for an eight-bit color scanner, this spans the range of
0-255: i.e., black is (0, 0, 0) and white is (255, 255, 255). It is
convenient to represent the array response to any analyte, odorant,
or mixture as the difference between each spot’s initial RGB values
and those after exposure. Thus, every analyte response is
represented digitally by a 108-dimensional vector (i.e., 36 red,
green, and blue color difference values). A color difference map
is useful for visualization of these data and is easily generated by
taking the absolute value of the difference of RGB values between
the “before” and “after” image (Figure 3). These difference maps
are usually not displayed over the full 0-255 range, since RGB
changes rarely span the entire 256 range; rather, for improved
display, the color palette of the difference map is enhanced by
expanding the displayed color range of 4-67 (i.e., six bit color)
to 0-255 (i.e., eight bit color). In this example, any change in
RGB values that is less than 4 is treated as background noise
and the difference is set zero; for any change between 4 and 67,
the RGB value is prorated into the full 256 RGB range; for RGB
changes greater than 67, the difference goes to 255. All data

analysis, however, relies strictly on the original digital differences
in the RGB values that make up the 108-dimensional vector and
are in no way affected by the difference map display parameters;
the complete digital data of the full database are available in the
Supporting Information.

Representative difference maps for 48 of the total 100 organic
compounds in the database are shown in Figures 5 and 6.
Excellent discrimination among a very wide range is observed
even without any statistical or chemometric analysis. The differ-
ence maps highlight the ability of the array to discriminate among
all common organic functional groups. Closely related compounds
from the different chemical classes are easily differentiated: the
color patterns of compounds within a class (e.g., amines vs acids
vs aldehydes, etc.) are very different from each other class and
easily distinguishable without any chemometric manipulation. In
addition, the difference maps of individual compounds are unique
and distinct by eye, even by comparison to very similar compounds
in the same class. The weaker responding analytes (thiols, esters,
alcohols, hydrocarbons) are displayed in Figure 6 with an
expanded color range (i.e., RGB values of 8-17 expanded to
0-255), and even here with weakly coordinating analytes, analyte
discrimination can be achieved easily.

Sensitivity. We have not tried in this work to determine the
limits of detection (LODs) or of recognition (LORs) for our
colorimetric sensor array, focusing instead on analyte identification
and selectivity. LODs for prior electronic noses have generally
been well above the ppmv level, but gas concentrations in ppmv
can be deceptive. It is well recognized that the thermodynamic
chemical potential of vapors, which determines the on-off
equilibrium for analyte binding to polymer or metal oxide sensors,
is best represented by the ratio of the partial pressure divided by
the saturation partial pressure, not the ppmv concentration.11 Thus,
low vapor pressure compounds can be detected at low vapor
pressures by definition; with polymer sensors, it is seldom possible
to detect below ∼0.1% of the saturation vapor pressure.12 To make
fair comparisons among all analytes for our studies here of analyte
identification and selectivity, we have made all analyte concentra-
tions at the same thermodynamic potential (i.e., saturation vapor
pressure).

A detailed study is underway on LODs and LORs for colori-
metric sensor arrays and will be reported elsewhere. Nonetheless,
some sense of scale is possible from our current data. A listing of
the saturation vapor pressures of the analytes examined is
presented in Table 1. The array shows very good responsiveness
to both Brønsted and Lewis bases and acids even with low vapor
pressures, such as dibenzylamine (∼3 ppmv at 298 K), octanoic
acid (∼49 ppmv), or octylthiol (∼0.1 ppmv). In previous work
using more limited colorimetric sensor arrays, we have found
LODs in the low ppbv range for amines, carboxylic acids, thiols,
and phosphines.2 The sensitivity of the array to bases and acids
is a result of the strong metal-analyte interactions, either by metal
ligation (i.e., coordination or dative bonding) or by Brønsted acid/

(10) Lide, D. H., Ed. Handbook of Chemistry and Physics; CRC Press: Ann Arbor,
MI, 2004.

(11) Doleman, B. J.; Severin, E. J.; Lewis, N. S. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 5442-5447.
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nose literature: (a) Dickinson, T. A.; Michael, K. L.; Kauer, J. S.; Walt, D.
R. Anal. Chem. 1999, 71, 2192-2198. (b) Schermer, H. V.; Corcoran, P.;
James, M. K.; Sens. Actuators, B 1993, 15-16, 256. (c) Gardner, J. W.;
Pearce, T. C.; Friel, S.; Bartlett, P. N.; Blair, N. Sens. Actuators, B 1994,
18-19, 240.

Figure 4. Difference map of saturated aqueous salt solutions at
295 K shown with the color range expanded from 6 to 8 bits per color
(RGB range of 4-67 expanded to 0-255). The array is essentially
nonresponsive to changes in RH.
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base interactions. Weakly coordinating vapors such as esters,
ketones, alcohols, arenes, and hydrocarbons show a lower
response, just as the mammalian olfactory system does. In all
likelihood, this is not coincidental, since many of the olfactory
receptors probably contain a metal ion (e.g., Cu(II), Zn(II), and
possibly Mn(II)) at their active site.9 Since weakly coordinating,
nonproton acidic or basic compounds are unable to interact
strongly with most of our chromophores, their response is
diminished. Even with hydrocarbons, however, the array can
interact with vapors via van der Waals and solvatochromic
interactions.

Chemometrics, Reproducibility, and Resolution. As dis-
cussed earlier, each analyte response is represented as the change
in the red, green, and blue values of each of the 36 dyes, i.e., a
108-dimensional vector (the full digital data are available in the
Supporting Information). To examine the multivariate distances
between the analyte responses in this 108-dimensional RGB color
space, a hierarchical cluster analysis (HCA) was performed using
the usual minimum variance (“Ward’s”) method.13 A hierarchical
tree (i.e., dendrogram) of all 100 analytes is shown in Figure 7.
For this HCA, the color differences were standardized in the usual
fashion (i.e., (observed change - mean change)/(standard devia-

Table 1. Vapor Pressures at 298 K of 100 Common VOCs

analyte family analyte

vapor
pressurea

(ppmv) analyte family analyte

vapor
pressurea

(ppmv)

alcohols ethanol 78000 aromatic amines pyridine 19700
cyclopentanol 14000 2-picoline 14700
3,3-dimethyl-2-butanol 9000 3-picoline 8000
1-butanol 6300 4-picoline 7600
3-hexanol 6300 3,5-lutidine 2300
2-hexanol 3300 3,4-lutidine 1600
1-pentanol 2200 aniline 660
cyclohexanol 1300 3,5-dimethylaniline 170
1-hexanol 1220 dibenzylamine 3
2-phenyl-1-propanol 990 aromatics benzene 133000
phenol 360 toluene 36000
2-octanol 320 p-xylene 11500
cycloheptanol 270 carboxylic acids trifluoroacetic acid 140000
1-octanol 104 formic acid 43400
benzyl alcohol 70 acetic acid 15000
4-decanol 50 propionic acid 4900
1-heptanol 38 2-chloropropionic acid 1400
2-decanol 26 tert-pentanoic acid 990
3-decanol 26 isobutyric acid 570
1-nonanol 25 perfluorooctanoic acid 360
1-decanol 11 pentanoic acid 300
1-dodecanol 1.1 hexanoic acid 240

aldehydes hexanal 14200 bromoacetic acid 160
heptanal 5000 trichloroacetic acid 100
octanal 2700 3-bromopropionic acid 100
benzaldehyde 1270 chloroacetic acid 90
nonanal 690 heptanoic acid 14
o-tolualdehyde 410 octanoic acid 5
(d,l)-2-phenylpropanal 380 esters methyl octanoate 680
1-myrtenal 190 methyl benzoate 440
decanal 160 ethyl benzoate 230

aliphatic amines triethylamine 92000 ethyl nonanoate 150
di-n-propylamine 41500 hydrocarbons 1-octene 211000
amylamine 39700 cyclohexene 113000
di-sec-butylamine 10000 octane 14300
diisobutylamine 9800 trans-5-decene 2630
2-heptylamine 7600 1-decene 2600
1,5-dimethylhexylamine 4200 dodecane 1320
1-heptylamine 3900 tetradecane 48
tert-octylamine 3800 ketones 3-heptonone 1840
N,N-dimethylbenzylamine 2400 2-octanone 800
di-n-butylamine 2300 3-decanone 350
2-ethyl-1-hexylamine 1580 phosphines dimethylphenylphosphine 1000
1-octylamine 1280 tri-n-butylphosphine 90
benzylamine 860 thiols 1-pentylthiol 18200
cyclooctylamine 800 1-hexylthiol 5500
N,N-dimethylhexylamine 770 cyclohexylthiol 5200
1-nonylamine 360 benzylthiol 620
1-decylamine 140 1-octylthiol 560
1-undecylamine 56
dicyclohexylamine. 45

a Vapor pressures from the EPA’s EPI software suite (http://www.epa.gov/opptintr/exposure/docs/episuitedl.htm) or from Material Safety
Data Sheets (MSDS); www.msdssearch.com. Due to differences among sources and small variations in temperatures, these values should be
taken as approximate only.
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tion) for each dye) so as to weight all dyes equally.
An advantage of array-based chemical sensing is that it can

respond to analytes for which it was not originally designed to
detect: in principle, even for an unknown compound, a sensor

array should be able to tell us what the unknown is like. The
vectors representing the analytes cluster according to the func-
tional group of the organic compound: aromatic amines, aliphatic
amines, carboxylic acids, strong acids, aldehydes, thiols, and

Figure 5. Colorimetric array response to VOCs visualized as color difference maps. Shown are 24 representative VOCs after equilibration at
their vapor pressure at 295 K. Full digital data for 100 VOCs are provided in the Supporting Information. The color range of these difference
maps are expanded from 6 to 8 bits per color (RGB range of 4-67 expanded to 0-255).

Figure 6. Colorimetric array response for 24 representatives of less responsive organic compounds at their vapor pressure at 295 K; color
range expanded from 4 to 8 bits per color (8-17 expanded to 0-255).
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phosphines form distinct branches in the hierarchical tree.
Alcohols, ketones, esters, and even arenes and hydrocarbons
(alkanes and alkenes) form separate clusters, despite the relatively
weak response of the array to these chemical classes. The
important lesson from the HCA is that once a library of array
responses is created, the chemical class of new analytes can be
readily identified. Among all 100 compounds, only one, phenol,
was classed “incorrectly”, finding itself among the carboxylic acids;
given phenol’s unusually high acidity, however, it is probably more
accurate to consider it an “honorary” carboxylic acid than an
alcohol. As discussed elsewhere in greater detail with more
examples, very fine distinctions within individual chemical classes

can be easily made, especially if one includes bis-pocketed
porphyrins14 to probe the steric demands of analytes:2e linear
alkylamines are discernible from cyclic amines, primary from
secondary from tertiary, alkyl from aromatic, etc.

The complete database (available in the Supporting Informa-
tion) consists of the 108-dimensional vectors that are the change
in RGB values for each of the triplicate runs for each of the 100
analytes plus an average response for each analyte. Triplicate data
were acquired to probe the reproducibility of the array response
to each analyte. The unweighted Euclidean distance between any

(13) (a) Beebe, K. R.; Pell, R. J.; Seasholtz, M. B. Chemometrics: Practical Guide;
J. Wiley & Sons: New York, 1998. (b) Haswell, S. J., Ed. Practical Guide to
Chemometrics; Marcel Dekker: New York, 1992.

(14) (a) Sen, A.; Suslick, K. S. J. Am. Chem. Soc. 2000, 122, 11565. (b) Suslick,
K. S. In The Porphyrin Handbook; Kadish, K., Smith, K., Guilard, R., Eds.;
Academic Press: New York, 2000; Vol. 4, Chapter 28, pp 41-63. (c)
Bhyrappa, P.; Vaijayanthimala, G.; Suslick, K. S. J. Am. Chem. Soc. 1999,
121, 262-263. (d) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J.
Am. Chem. Soc. 1996, 118, 5708-5711.

Figure 7. Dendrogram of the colorimetric array responses to 100 common VOCs at full vapor pressure at 295 K. Averages of three trials were
used for each analyte.
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two entries is a useful measure of their similarity: entries for
separate array exposures to the same analyte should be closer to
each other than to any other analyte’s entries. To probe the
accuracy of analyte recognition by the colorimetric sensor arrays,
the entire database was queried against itself. Every entry of the
database was compared against every other entry by determining
the unweighted Euclidean distance between them (Supporting
Information). For every pair of closest entries, both entries always
were for the same analyte: i.e., there were no misidentifications
out of the entire 400-entry database. The error rate therefore is
<0.25%.

The reproducibility of response of the colorimetric sensor array
was tested, and the results are shown in Figure 8. A detailed
comparison of n-decylamine (C10H21NH2) to n-undecylamine
(C11H23NH2) was undertaken to determine reproducibility of the
response of the arrays; these analytes were used for this test
because they have extremely similar array responses, relative to
the whole library (cf. Figure 7). For data taken on nine separate
arrays (printed separately on different dates, in different batches),
as seen in Figure 8, the Euclidean distances between the
decylamine and undecylamine classes in the HCA are well
resolved. Even the largest spread for decylamine (trial 4 vs rest
of cluster), for example, is less than a third of the distance between
the decylamine and undecylamine clusters. In a separate set of
trials of 11 runs of n-decylamine, the average squared Euclidean
distance (SED) between pairs of analyses was 2087 (ranging from
689 to 3985), whereas the SED between decylamine and unde-
cylamine clusters was 9076.

The greatest remaining source of variability with the arrays
lies in the quality of their printing. The arrays are currently printed
manually using an array of slotted pins, as has often been used
for DNA array printing. It is anticipated that use of a robotic
noncontact printer will lead to still better print quality and further
enhanced array reproducibility. Work toward this goal is currently
in progress.

Fortunately, by using the change in color values of the array
before and after exposure to the analyte, much of the variation in
printing from array to array is canceled out. We can show this
quantitatively using the Kubelka-Munk (KB) theory.15 In its
simplest approximate form, the KB equation is

where R is the reflectance (i.e., roughly the RGB values from the
scanner expressed as a fraction from 0 (no reflectance) to 1 (total
reflectance)), ε is the extinction coefficient of the dye, C is the
concentration of the dye, and S is a scattering coefficient
dependent upon the solid on which the dye is immobilized. As
shown in Figure 9a and b, the observed changes in color values
of dye spots are well represented by the KB equation. We then
use this equation to model a calculated color difference as a
function of dye concentration: Figure 9c shows an example for
model data at a single wavelength for a dye spot, where the ratio
of the effective extinction coefficient is 0.5 for the dye before
versus the dye after analyte exposure. Note that, as the dye
concentration increases, the color value change approaches a
constant; i.e., errors in dye concentration during printing cancel
for highly colored spots. In the specific case illustrated, if initial
dye spot color value is ∼150, then the color value change (i.e.,
∆R, ∆G or ∆B) is ∼30 (both values are roughly typical of dyes in
the colorimetric sensor array). In this case, a 15% change in
concentration (or amount of dye deposited), for example, leads
to only a 5% change in the observed R, G, or B color value, and
only a 0.6% difference in the color value change in R, G, or B.

Principal Component Analysis. Principal component analy-
sis (PCA)13 can be used to determine the number of meaningful
independent dimensions probed by a cross-reactive array. The
eigenvector of each principal component defines the linear
combination of the response of each sensor parameter by the
amount of variance in the data along each principal component.
The total number of independent eigenvectors must be n - 1 for
n-dimensional data for a sufficiently large data set (i.e., one
containing at least n number of analytes). Even for diverse libraries
of VOCs, PCA for most prior electronic nose technology is
dominated by only two or three independent dimensions; in fact,
there is often a single dominant dimension that accounts for >90%
of the total discrimination and roughly corresponds to sensor
hydrophobicity. This very limited dimensionality (or “dispersion”)
means that very little of the total diversity of chemical properties
is being probed in traditional electronic nose technology: this is
the inherent result of relying primarily on van der Waals interac-
tions (e.g., adsorption to metal oxide surfaces or sorption onto or
into polymer films) for molecular recognition.

Because of the limited dispersion in past sensor arrays, the
data obtained with traditional electronic nose technologies is
typically plotted against the two most important PCA dimensions.
For showing differences between analytes, this approach can work
only because the dimensionality of the PCA is extremely limited. If
one is using an array of cross-reactive sensors, and PCA can
reduce the response of the array to only two or three dimensions,
one may well ask what the whole point of an array was in the
first place! If an array of sensors can be reduced to simply two
dimensions, then in principle, two properly chosen sensors are
all that is necessary for the same resolution.

The colorimetric sensor array, in contrast, is not limited to
van der Waals interactions but rather employs a variety of
intermolecular interactions between the dyes and the analytes.
The numerous and diverse interactions explore a broad area of
chemical properties space. This diverse set of interactions spreads

(15) (a) Kubelka P.; Munk F. Z. Tech. Phys. 1931, 12, 593-601. (b) Kuehni, R.
G. Color, An Introduction to Practice and Principles; Wiley: New York, 1997;
Chapter 8. (c) Molenaar, R.; ten Bosch, J. J.; Zijp, R. J. Appl. Opt. 1999, 38,
2068-2077.

Figure 8. HCA dendrogram showing the response reproducibility
and facile differentiation among 9 different printed arrays exposed to
decylamine (C10H21NH2) compared to undecylamine (C11H23NH2);
saturated vapor pressure at 295 K.

(1 -R)2/2R ) εC/S (1)
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the variation among the database entries (i.e., the discrimination
among VOCs) over many independent dimensions (i.e., eigen-
vectors). As shown in Figure 10, PCA of the averaged responses
to 100 VOCs shows that 90% of the discriminatory range requires
14 dimensions, 95% of total discrimination requires 22 dimensions,
and 99% requires 40 dimensions (out of a possible 99 independent
dimensions, i.e., n - 1, where n is the number of analytes in
database; for an unlimited sized data set, our 6 × 6 array has a
total possible 108 dimensions, i.e., red, green, and blue color
changes for 36 dyes). By probing a much wider range of chemical
interactions, we have dramatically increased the dispersion of our
sensor array. It is this increased dimensionality that permits us
to discriminate among very closely related analytes, e.g., decy-
lamine versus undecylamine, as discussed earlier.

If we take the colorimetric array responses and reduce the
dimensionality of the data to two dimensions, only 53% of the

discriminatory ability of the array is captured, as shown in Figure
11. As an inherent consequence, the separation of analytes into
their chemical classes is limited. Significant overlap of the
hydrocarbons, thiols, ketones, esters, and aldehydes is observed,
and phosphines cannot be distinguished from aromatic amines.
This is not a negative reflection on the colorimetric array, but
rather it emphasizes how poor the dispersion of past technologies
has been. As shown using the full dimensionality of the array in
a hierarchical cluster analysis, the colorimetric sensor array is
capable of chemical classification essentially without error among
the 100 VOCs in the library examined and can distinguish even
very closely related analytes without difficulty.

Figure 9. Kubelka-Munk model of reflectance and error cancel-
lation by differencing. (a) Observed RGB color values of a spot of
cresol red dye as a function of dye concentration in the spotting
solution. (b) Kubelka-Munk model of the data. (c) Calculated color
difference vs dye concentration, using the Kubelka-Munk equation
and model data at a single wavelength for a dye spot, where the ratio
of the effective extinction coefficient is 0.5 for the dye before vs the
dye after analyte exposure. Note that as the dye concentration
increases, the color value change approaches a constant, i.e., errors
in dye concentration during printing cancel for highly colored spots.

Figure 10. PCA from 100 VOCs showing that our colorimetric
sensor array has an extraordinarily high level of dispersion. Fourteen
dimensions are required to define 90% of the total variance, 22
dimensions for 95% of the total variance, and 40 dimensions for 99%.

Figure 11. Two principal components of the colorimetric sensor
array from the response data averages of the 100 VOCs at 295 K, at
their full vapor pressure. Only 53% of the total discriminatory
separation is captured by these first two components, so only fair
spatial discrimination among chemical classes (shown in the same
color scheme as Figure 7) can result. When the full dimensionality of
the array response is used (i.e., by HCA as in Figure 7), there are no
confusions among analyte classes or between closely related ana-
lytes.
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One of the most important applications of a sensor array is
that it should easily produce a unique response to complex
mixtures (coffees, perfumes, etc.) without the need for the mixture
to be broken down into its component parts. Such fingerprinting,
however, requires a very high dimensionality of the principal
components such as that present with our array. The number of
possible differentiable patterns available to the colorimetric array
is immensely large, as we will illustrate through the following
“back-of-the-envelope” calculation. In principle, each of the 108
dimensions in the possible color differences of the 36-dye array
can take on 1 of 511 possible values (the range is -255 to +255),
for inexpensive 8-bit scanners or digital cameras. The maximum
number of possible patterns is then (511)108. In practice, RGB color
change values do not range over the full 511 possible values; the
color change values, however, are still substantial. For example,
the maximum observed change in the database of 100 VOCs is
-205 and the first 300 largest absolute values of color changes
are all >100; for any given analyte, however, most dyes do not
change color much at all, and so the overall mean of the absolute
values of the color changes is only 16.4. We will make the
extremely conservative estimate of the average color change being
16.4 per dimension (a gross underestimate, because the important
PCA dimensions are dominated by the more highly responsive
dyes). A difference of 4 in the R, G, or B values is adequate to
detect a change (also a large overestimate), and then our
resolution per dimension is 4.1. From the principal component
analysis, 95% of all information is contained in 22 specific
dimensions (i.e., linear combinations of the 108 different R, G,
and B values). This implies a conservative lower limit of discrimi-
nation that is still huge: (16.4/4)22 ) 3 × 1013 distinctly recogniz-
able patterns for a 36-dye colorimetric sensor array. While we
realize that there are hidden assumptions and gross simplifications
in this rough analysis, it does show the critical importance that
high dimensionality has for the success any electronic nose
technology.

CONCLUSION
The colorimetric sensor array represents a fundamental new

approach to array-based chemical sensing. Based on a broad range
of chemical-sensing interactions, rather than on weak nonspecific
van der Waals forces, the disposable array exhibits both excellent
sensitivity and selectivity to a broad range of organic compounds.

The array is particularly well-suited for the detection of biogeni-
cally important analytes, such as amines, thiols, and acids. In
contrast to nearly all prior electronic nose technologies, data from
the colorimetric sensor array is highly dispersed among many
independent dimensions: i.e., 95% of the discriminatory range
requires 22 independent dimensions. The arrays are essentially
nonresponsive to changes in humidity, which avoids the common
problem of interference from changes in humidity during real-
world analyses. The array shows very good responsiveness to both
Brønsted and Lewis bases and acids even with low vapor
pressures. We have found (in previous work using more limited
colorimetric sensor arrays) LODs in the low ppbv range for
amines, carboxylic acids, thiols, and phosphines.2 The sensitivity
of the array to bases and acids is a result of the strong metal-
analyte interactions, either by metal ligation (i.e., coordination or
dative bonding) or by Brønsted acid/base interactions. Weakly
coordinating vapors such as esters, ketones, alcohols, arenes, and
hydrocarbons show a lower response, just as the mammalian
olfactory system.
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