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The controlled synthesis and fabrication of nano- and
microstructured materials has received much attention

over the past decade owing to the unique chemical, electrical,
magnetic, and optical properties of nanoscaled materials when
compared to the bulk. Due to its low price and abundance, low
toxicity, biodegradability, and high chemical stability, iron oxide
is an especially promising material which has been studied for
use in applications such as photocatalysis,1−6 heavy metal
removal,7,8 sensing,9−11 and energy storage.4,10−14

Previously, high surface area, nanostructured iron oxides have
been synthesized by using a template, such as polystyrene
microspheres15 or copper nanowires,16 on which iron oxide or
an iron oxide precursor is grown. These templates can be
expensive and are typically destroyed upon removal. Forced
hydrolysis of an iron precursor in the presence of surfactants
can also lead to nano- or microspheres of iron oxide with
varying surface areas.17,18 Iron oxide nanodiscs have been made
using a controlled etching with oxalic acid.19 The most
common method for producing iron oxide microspheres has
been solvothermal.6,7,9,20−26 Some of these procedures require
harsh chemicals or expensive surfactants, while other try to
minimize the environmental impact of production. All,
however, are batch processes that take many days in a high
pressure vessel and generally require further workup; in
addition, all of these methods are expensive (often prohib-
itively) and are difficult to scale-up.
Spray pyrolysis and similar aerosol techniques are well-

known as scalable synthetic methodologies for the preparation
of metal oxide materials from relatively inexpensive precur-
sors.27−32 Porous particles with relatively high surface areas
have been obtained with spray pyrolysis for carbon,33−40

silica,41,42 titania,43 alumina,44 Bi2WO6,
45 Mn3O4,

46 ZnS,47 and
MoS2.

48 Iron oxides, however, have not been previously
prepared in high surface area form through spray pyrolysis;
only films49,50 and solid particles28,51−54 have been reported.
In this work, we show the use of ultrasonic spray pyrolysis

(USP)31,32 to create very high surface area, porous, iron oxide
microspheres. Through the use of colloidal oxy/hydroxy-
iron(III) polymers in the precursor solution (ferritin core
analogues, so-called Spiro-Saltman balls55,56), porous iron oxide
spheres are created that are more crystalline than those made
from simpler iron salt precursors. Due to the nature of USP, the
size of the particles can be controlled without affecting the
properties of the material; the morphology and surface area can
be easily tuned by changing the salts used to prepare the
precursor. This method is an inexpensive and facile way to
synthesize high surface area, porous, iron oxide microspheres

from simple and inexpensive precursors using the continuous,
scalable process.
First, a solution of ferritin core analogues was prepared by

reacting aqueous solutions of Fe(NO3)3·(H2O)9 (98%, ACS
from Sigma-Aldrich) with Na2CO3 or NaHCO3 solutions. The
mixture was stirred and sonicated in a cleaning bath until no
more gas evolved (<5 min); this was easily monitored visually
as the initially yellow Fe3+ solution turned opaque and brown as
CO2 gas evolved, eventually becoming a translucent dark red.
DI water was added to make a 50 mL solution.
The precursor solutions were then nebulized using a made-

in-house nebulizer (1.65 MHz, ∼10 W/cm2) connected to a
quartz flow tube inside a tube furnace, as described
previously.37,38 Compressed air flowing at 1 SLPM was used
as a carrier gas to carry the precursor droplets through a furnace
tube at 500 °C (residence time ∼10 s). The final product was
collected in a series of water bubblers and washed 3× with
water to remove any remaining salt porogen. During the
heating of the droplets, nitrate ions decompose quickly,
forming a NaOH salt template in situ and yielding NOx gases
which act as porogens.35 The NaOH template is removed in
the water bubblers and during subsequent washings leaving
highly porous iron oxide spheres.
From a precursor solution containing 0.2 M Fe(NO3)3 and

0.2 M Na2CO3, spheres 560 ± 180 nm in diameter are formed
(Figure 1a and Supporting Information Figure S1a). TEM
micrographs suggest the spheres are porous throughout (Figure
1b), and Brunauer−Emmett−Teller (BET) measurements
show a surface area of 301 m2/g and average pore radius (as
determined using the Barrett−Joyner−Halenda method) of 2.1
nm. This surface area is as high as any yet recorded for an iron
oxide material.
Powder X-ray diffractometry (XRD) confirms the presence

of α-Fe2O3 with an average crystallite size of 7.1 nm (Figure 2).
Elemental analysis (EA) confirms the removal of the Na (<1 wt
%). As a control, particles were made from a precursor
composed of only Fe(NO3)3 and different amounts of the
porogen NaNO3 (i.e., no Spiro-Saltman balls). Compared to
the Spiro-Saltman-based spheres, the control spheres (spheres
formed using Fe(NO3)3 and a neutral salt porogen NaNO3)
had similar surface areas but decreased crystallinity (Figure 2).
Conversely, by using a strong base (NaOH) in place of the
weakly basic Na2CO3 or NaHCO3 to make the precursor

Received: February 27, 2015
Revised: April 28, 2015
Published: May 5, 2015

Communication

pubs.acs.org/cm

© 2015 American Chemical Society 3564 DOI: 10.1021/acs.chemmater.5b00766
Chem. Mater. 2015, 27, 3564−3567

pubs.acs.org/cm
http://dx.doi.org/10.1021/acs.chemmater.5b00766


solution, larger iron oxide particles are formed resulting in
relatively high crystallinity (Figure 2) but a lower surface area
(206 m2/g). The use of ferritin core analogues over simple iron

salts as precursors produces products with greater crystallinity
and similarly high surface areas.
The average size of the spheres is tunable by changing the

concentration of the precursors. For example, spheres 280 ±
110 nm in diameter were synthesized by using 0.02 M
Fe(NO3)3 and 0.02 M Na2CO3 (i.e., concentrations an order of
magnitude smaller than that used for the original spheres)
(Figure 1c and Supporting Information Figure S1b). These
smaller spheres have similar properties to those of the larger
spheres. Again, TEM suggests porosity throughout the entire
particle (Figure 1d), and BET measurements confirm a similar
surface area (294 m2/g) and average pore radius (1.7 nm). EA
confirms the removal of Na.
Other Fe3+ salts can also be used to prepare the Spiro-

Saltman precursor. A precursor obtained by reacting FeCl3 and
Na2CO3 results in hollow, porous spheres (Figures 3e,
Supporting Information Figures S2d and S3c). Here, the
NaCl byproduct acts as an in situ salt template; however, unlike
NaNO3, no decomposition occurs, and the salt template is a
solid instead of a liquid as is the case for the NaOH remaining
after NaNO3 decompostion (MPNaCl = 801 °C and MPNaOH =
318 °C).37 The lack of the NOx gas porogen can account for
the lower surface area (97 m2/g) of the product. Particles with
intermediate morphologies and surface areas are created by
simply mixing different molar ratios of Fe(NO3)3 and FeCl3
(Figure 3b−d, Supporting Information Figures S2a-c and S3a-
b). EA for all of the microspheres show negligible Na,
indicating that the salt templates were completely removed
with washing. Although the TEM for the 3:1 and 1:1
Fe(NO3)3/FeCl3 samples appear similar to the Fe(NO3)3
only sample, the differences in surface areas indicate a decrease
in porosity as more FeCl3 is added. It is hypothesized that both
the decrease in release of NOx porogen and the solid salt
template (NaCl) present with FeCl3 rich precursors leads to
larger voids.
Hematite has been suggested for use as a lithium-ion battery

anode given its high capacity, environmental benignity,
abundance, and low cost.58,59 Highly porous iron oxide
materials increase the practical capacity of anodes by increasing
the available material for lithiation.58,59 As a proof of concept,
we tested our iron oxide microspheres as Li-ion battery anodes.
Figure 4 shows the resulting charge capacities, discharge
capacities, and Coulombic efficiencies for 10 cycles of a half-cell
of the iron oxide-based working electrode versus a Li counter
electrode for the 0.2 M Fe(NO3)3/0.2 M Na2CO3 spheres. As
with many iron oxide anode materials, there is a very large
initial charge capacity usually attributed to surface electrolyte
interface layer formation.57 The charge and discharge capacities
diminish over only a few cycles and reach an ultimate efficiency

Figure 1. SEM (left) and TEM (right) micrographs of microspheres
prepared from (a, b) 0.2 M Fe(NO3)3 and 0.2 M Na2CO3 and (c, d)
0.02 M Fe(NO3)3 and 0.02 M Na2CO3.

Figure 2. XRD diffractograms of the porous microspheres made from
(black) Spiro-Saltman ferritin core analogues and two controls: (blue)
a neutral salt and (green) a stronger base. Hematite peaks (red) are
included as a reference (PDF no. 04-003-2900).

Figure 3. TEM micrographs of microspheres made from different molar ratios of Fe(NO3)3/FeCl3: (a) Fe(NO3)3 only, (b) 3:1, (c) 1:1, (d) 1:3, and
(e) FeCl3 only. Scale bars are 500 nm. BET surface areas are (a) 301 m2/g, (b) 226 m2/g, (c) 176 m2/g, (d) 132 m2/g, and (e) 97 m2/g.
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of just under 80% after 10 cycles. These results show that these
materials may prove useful as anodes in lithium-ion batteries
but that further development is necessary to become
competitive with the current state-of-the-art.4,58,59

In conclusion, we have shown that highly porous iron oxide
spheres of different morphologies, sizes, and crystallinities can
be produced from simple and inexpensive precursors using the
continuous, scalable process of ultrasonic spray pyrolysis. The
nebulized precursor solution is based on colloidal iron oxy/
hydroxy polymers (ferritin core analogues, so-called Spiro-
Saltman balls) which allows for an increased crystallinity while
maintaining a high surface area.
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Martínez, A. I.; Pech-Canul, M. I. Fe2O3 Thin Films Prepared by
Ultrasonic Spray Pyrolysis. Mater. Sci. Forum 2010, 644, 105−108.
(51) Ramamurthi, M.; Leong, K. H. Generation of monodisperse
metallic, metal oxide and carbon aerosols. J. Aerosol Sci. 1987, 18,
175−191.
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