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ABSTRACT: A comprehensive review on the development and state of the art of

colorimetric and fluorometric sensor arrays is presented. Chemical sensing aims to

detect subtle changes in the chemical environment by transforming relevant chemical or

physical properties of molecular or ionic species (i.e., analytes) into an analytically

useful output. Optical arrays based on chemoresponsive colorants (dyes and

nanoporous pigments) probe the chemical reactivity of analytes, rather than their

physical properties (e.g., mass). The chemical specificity of the olfactory system does

not come from specific receptors for specific analytes (e.g., the traditional lock-and-key

model of substrate—enzyme interactions), but rather olfaction makes use of pattern

recognition of the combined response of several hundred olfactory receptors. In a

similar fashion, arrays of chemoresponsive colorants provide high-dimensional data

from the color or fluorescence changes of the dyes in these arrays as they are exposed to

analytes. This provides chemical sensing with high sensitivity (often down to parts per

billion levels), impressive discrimination among very similar analytes, and exquisite

fingerprinting of extremely similar mixtures over a wide range of analyte types, in both the gas and liquid phases. Design of both
sensor arrays and instrumentation for their analysis are discussed. In addition, the various chemometric and statistical analyses
of high-dimensional data (including hierarchical cluster analysis (HCA), principal component analysis (PCA), linear
discriminant analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs)) are presented and
critiqued in reference to their use in chemical sensing. A variety of applications are also discussed, including personal dosimetry
of toxic industrial chemical, detection of explosives or accelerants, quality control of foods and beverages, biosensing
intracellularly, identification of bacteria and fungi, and detection of cancer and disease biomarkers.

CONTENTS 3.2.1. Digital Imaging of Colorimetric Sensor
1. Introduction to Chemical Sensing and Optical 320, é(rerlf-)é’shone-Based Microplate Reader gjg
Sensors . 232 4. Statistical Analysis and Modeling 248
1.1, Noqoptlcal Sensors 233 4.1. Descriptive Methods 249
1.2..Opt|cal Sensors 233 4.1.1. Hierarchical Cluster Analysis (HCA) 249
2. Opttical Array Sensing: Concepts anq Sensors 235 4.1.2. Principal Component Analysis (PCA) 250
2.1. Ba5|s'of In.termoleculgr Intgractlons 235 4.2. Classification Methods 251
2.2, (;Ia55|ﬁcat|on of Colorimetric and Fluoromet- 4.2.1. Linear Discriminant Analysis (LDA) 252
ne Sensqr Elgments 236 4.2.2. Support Vector Machines (SVMs) 254
2.2.1. Lewis Aad/Base Dyes 236 4.2.3. Artificial Neural Networks (ANNs) 255
2.2.2. Bransted Aad/Base Dyes 239 5. Applications of Colorimetric and Fluorometric
2.2.3. Redox Indicator Dyes 240 Sensor Arrays 257
2.2.4. Solvatochro.rmC or Vapo.chrom.lc Dyes 241 5.1. Applications to Single Analytes 257
2.2.5. Chromogenic Aggregative Indicators 242 5.1.1. Volatile Organic Compounds 257
2.2.6. Displacement Strategies for Fluorescent 51.2. Toxic Industrial Chemicals 260
Sensors 242
2.2.7. Molecularly Imprinted Sensors 242 2:3 /I;\)?F:i(;%sesAnalytes ;22‘
3. Sensor Fabrication and Instrumentation 243 51.5. Accelerants and Postcombustion Resi-
3.1. Array Fabrication: Substrate Considerations 243 dues 266
3.1.1. Printed Arrays 243
3.1.2. Fiber Optic Arrays 244
3.2. Instrumentation: Digital Imaging of Colori- Special Issue: Chemical Sensors
metric and Fluorometric Sensors 245

Received: April 6, 2018
Published: September 12, 2018

ACS Publications  © 2018 American Chemical Society 231 DOI: 10.1021/acs.chemrev.8b00226
L2 4 Chem. Rev. 2019, 119, 231-292


pubs.acs.org/CR
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemrev.8b00226
http://dx.doi.org/10.1021/acs.chemrev.8b00226

Chemical Reviews

5.2. Applications to Complex Mixtures 268
5.2.1. Foods and Beverages 268
5.2.2. Proteins 270
5.2.3. Ratiometric Fluorometry for Intracellular

Sensing 272

5.2.4. Bacteria and Fungi 274
5.2.5. Cancer and Disease Biomarkers 277

6. Conclusions and Future Challenges 279
Author Information 280

Corresponding Author 280

ORCID 280

Notes 280

Biographies 280

Acknowledgments 281
References 281

1. INTRODUCTION TO CHEMICAL SENSING AND
OPTICAL SENSORS

Chemical sensing aims to detect subtle changes in the chemical
environment by transforming relevant chemical or physical
properties of molecular or ionic species (i.e., analytes) into an
analytically useful output.'™> The prototypical example of
chemical sensing is the olfactory system of animals. Even for
humans beings, who are generally more visual than olfactory
creatures, the sense of smell is one of our most basic capabilities,
and we are able to recognize and discriminate over 10000
individual scents, and possibly even billions.”> The chemical
specificity of the olfactory system does not come from specific
receptors for specific analytes (e.g., the traditional lock-and-key
model of substrate—enzyme interactions), but rather olfaction
makes use of pattern recognition of the combined response of
several hundred olfactory receptors. For typical terrestrial
mammals, there are ~1000 semispecific olfactory receptor
genes, which accounts for ~3% of the entire genome;" ™" even
humans have some 400 active olfactory receptors.” Despite the
complicated and speculative structures of the transmembrane
olfactory receptors (the largest class of G-protein-coupled
receptors”’), a large fraction of them are believed to be
metalloproteins that are highly reactive to numerous odorant
molecules throu§h coordination of the analyte to the metal-
binding site.'’™ "

There is a pressing demand to develop effective method-
ologies that enable rapid, sensitive, portable, and inexpensive
detection of toxic analytes in gases or aqueous solutions. Array-
based sensor technologies, or “electronic noses”,'*™** use
several to many different cross-reactive sensors that interact
with analytes, most commonly through physical adsorption, and
generate an electrical response (e.g., changes in resistance or
capacitance). The pattern of the sensor array, due to the cross-
reactivity of the individual sensors, enables molecular recog-
nition by comparison to a predetermined library of responses.
The first example of an artificial nose was reported by Persaud et
al. in 1982, who tried to mimic the biological olfactory system
using semiconductor transducers that were semispecific to
analytes:** three different metal oxides were employed to sense
similar mixtures and discriminate among them. In recent years,
an increasing number of cross-reactive analytical devices have
emersged and have been applied to environmental monitor-
ing, ">’ security screening,”>* biomedical diagnosis,*™*’
and food inspection.”*™*

The vigorous development of novel techniques in chemical
sensing has resulted in the availability of many useful sensors not
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based on electrical responses as alternatives to electronic noses.
Among these, optical sensors are especially noteworthy.**~*
The most common optical sensors are based on colorimetric or
fluorescent changes originating from intermolecular interactions
between the chromophore or fluorophore with the analytes.**
Combining array-based techniques that employ a chemically
diverse set of cross-reactive sensor elements with novel digital
imaging methods,”*~* one can produce a composite pattern of
response as a unique optical “fingerprint” for any given
analyte.””*”% By analogy, such optical sensor arrays are often
referred to as optoelectronic noses or tongues.61

Optical arrays based on chemoresponsive colorants (dyes and
nanoporous pigments) probe the chemical reactivity of analytes,
rather than their physical properties. This provides a high
dimensionality to chemical sensing that permits high sensitivity
(often down to parts per billion (ppb) or even parts per trillion
(ppt) levels), impressive discrimination among very similar
analytes, and fingerprinting of extremely similar mixtures over a
wide range of analyte categories, in both gaseous and liquid
phases. Colorimetric and fluorometric sensor arrays therefore
effectively overcome the limitations of traditional array-based
sensors that solely depend on physisorption or nonspecific
chemical interactions. Such optical array sensing has shown
excellent performance in the detection and identification of
diverse analytes, ranging from chemical hazards to energetic
explosives, to medical biomarkers, and to food additives.

To this end, a comprehensive review will be presented on the
development and state of the art of optical array sensing
technologies, mainly focused on colorimetric and fluorometric
sensor arrays. We will cover recent advances and progress with
such sensor arrays and their applications in the detection of
volatile organic chemicals (VOCs), explosive screening, food
and beverage inspection, as well as disease diagnosis; several
commonly used methods for multivariate analyses of the high-
dimensional data will also be briefly introduced. Finally, some
perspectives regarding the development of the next generation
of optical sensors and other chemical sensing techniques will be
presented.

New sensor technologies must inevitably face the dilemma of
attempting to create sensors that are both increasingly sensitive
and increasingly robust; beyond a certain point, the more
sensitive a sensor is, the less robust it inherently becomes due to
poisoning during usage in real-world situations. Aging of sensors
is a particularly acute problem for any sensor array that is
intended to be reusable, regardless of the class of sensors. For
pattern recognition to work (inherent in the concept of any kind
of “nose” technology), the library of patterns must be
representative of the sensors’ responses in immediate time of
application; if sensor response drifts, then libraries can become
obsolete very quickly. One path around this dilemma is to
develop disposable sensors, thus unlinking the opposing
demands that challenge the development of chemical sens-
ing 2

Present array-based detectors have employed a variety of
analytical strategies to trace even subtle changes in either
physical properties (e.g., molecular weight, conductivity, surface
tension) or chemical reactivity (e.g, Lewis acidity/basicity,
hydrogen bonding, redox potential), including the use of
conductive polymers and polymer composites, metal oxide
semiconductors, quartz crystal microbalances, polymer coated
surface acoustic wave devices, and fluorescent molecular
frameworks. The chemical sensors that have been reported so
far for odorant analysis, generally, can be categorized by their
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signal transduction approaches into optical and nonoptical
types.”> The classification of these sensors is based primarily
upon their use of either the physical properties of the analytes or
the chemical interactions of the analytes. Electrochemical
sensors detect signal changes in resistance, for example, induced
by an electrical current passing through the electrodes which
contact and interact with chemical analytes. Mass sensors
measure differences in the mass of the sensor surface upon
exposure to analytes. Optical sensors convert changes in
electromagnetic waves (e.g, UV—vis light) into electronic
signals. This review will begin with a brief introduction of these
classes of sensors, followed by detailed discussions of the
concepts, fabrication methods, and applications of optical array
sensing technology.

1.1. Nonoptical Sensors

The mammalian olfactory system is, in a way, a large array of
bioelectrical receptors. Similarly, electrochemical sensors are
made of resistors or capacitors as electronic units that keep track
of changes in conductivity or capacitance during interactions
between analyte molecules and the electrically active sur-
face.*"" Other grouping criteria include the detection basis
(i.e., material vs geometry change), the arrangement (i.e., single
versus differential), the size of the sensor, the reachable
resolution, and the type of readout circuit.”® Chemiresistive or
chemicapacitive sensors are straightforward to fabricate: a pair of
parallel electrodes placed on a substrate and separated by a
dielectric material, where the sensing component is coated or
drop-cast to tune the electrochemical reactivity. An interdigi-
tated electrode array is often used to adjust overall resistance or
capacitance.

In attempts to mimic the olfactory receptors, a broad range of
electrochemical sensors made of different materials have been
explored and designed. The most widely used electrochemical
sensors include metal oxide chemiresistive semiconductors (e.g.,
$n0,),*”” organic field-effect transistors (OFETs),” ™"
conductive polymers of both inherently conductive (e.g.,
polythiophenes)”® and those integrated with conductive
particles (e.(g., graphene— or carbon nanotube—polymer
composite).” "7

There are several diverse types of electrochemical sensors that
have been successfully used in a broad class of real-world
applications; this, however, goes beyond the scope of this review.
For more details of electrochemical sensors, the readers can refer
to recent publications on environmental,* biosensin§ and
immunosensing,gl_84 food and beverage,gs_87 clinical,*®**° and
security screeninggo’91 applications.

The most common class of electrochemical sensors are metal
oxide sensors (MOSs), a type of chemiresistors,"”””* which are
usually heated and react with volatile organic analytes to
produce changes in electrical properties (e.g., resistivity or
capacitance). The primary drawback of the use of traditional
electrochemical sensors (e.g., unmodified metal oxide sensors or
conductive polymers) for chemical sensing lies in the nearly
indistinguishable sensor responses among similar analytes. This
is due to the nature of those specific types of sensors in that they
rely fundamentally on physical adsorption or nonspecific
chemical interactions between the chemical analytes and the
sensor receptors. The reliance on physical adsorption, in most
cases, leads to poor selectivity of electrochemical sensors toward
targeted analytes as well as interference from ambient humidity,
which greatly restricts particularly the field usage of this type of
sensor. In addition, baseline drift of sensor response resulting
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from aging also poses a major challenge to the development of
electrochemical sensors.”

Surface modification of electrochemical sensor surfaces can
provide for improved selectivity, especially for bioanalytical
applications, for example with molecular imprinted mem-
branes” ™" or aptamers,”*™'°" but at the expense of added
complexity and susceptibility to drift from irreversible chemical
reactions. Surface modification of electrochemical sensors has
also had success using various nanostructures; the enhanced
sensitivity is largely due to the extremely high surface area to
volume ratio inherent to nanoparticles.gl’88 Nanowires, nano-
tubes, nanofibers, nanospheres, graphene, and other two-
dimensional layered materials have thus far shown great
promise, although selectivity among similar analytes can be
problematic.”>*" Hybrid structures of these nanomaterials are
likewise excellent candidates for chemical sensors and have
drawn significant attention in the past decade. Owing to the low
dimensionality of the data resulting from most present
incarnations of these sensors, engineering chemical selectivity
into these systems remains the key to the future success for
applications in chemical sensing or biosensing.

Another class of nonoptical sensors is based on the detection
of small changes in the sensor’s mass upon exposure to chemical
analytes through physisorption of analytes onto the sensor or
from specific chemical reactions of the analytes with the sensor.
Mass sensors are generally microelectromechanical systems
(MEMS)."** A typical mass sensor is a piezoelectric resonator
with an absorbing polymer or molecular receptor coating.
Molecular analytes are adsorbed on or absorbed in the film of the
sensor, increasing the mass of the sensor and thus decreasing in
the resonant frequency. A typical example of mass sensors is the
quartz crystal microbalance (QCM, also known as bulk acoustic
wave sensors);' *7'% surface acoustic wave (SAW) sen-
sors'”77'% are a related class of sensors based on two or more
interdigitated transducers placed on the surface of a piezoelectric
substrate that measure delay in surface waves from one
transducer to a second through the piezoelectric. For a QCM,
a quartz resonator is made by cutting along a particular crystal
direction to endow the device with a thickness shear mode,
which makes use of a shear wave that has extremely low velocity
in the fluid.'"”""”""" Due to their effectiveness in the liquid
phase, quartz crystal microbalances have been used for aqueous
biosensing'**'"* and immunosensing,'**'"?

Arrays of QCM or SAW sensors have been used to detect and
distinguish a wide range of chemical analytes, including
industrial toxins, chemical hazards, and biomolecules such as
organophos;ahates,114 aromatic and haloggenated hydrocar-
bons,"*™*'" chemical warfare agents,11 small molecular
biotoxins,"'* and HCN.""” QCMs have also shown promising
results in the in situ analysis of solution supersaturation during
cooling crystallization,'** and the characterization of metallic or
polymeric nanoparticle size achieves results comparable to those
determined by transmission electron microscopy (TEM) or
dynamic light scattering (DLS)."*!

1.2. Optical Sensors

Optical chemical sensors use infrared, visible, or ultraviolet light
L : o 1 122
to probe chemical interactions at liquid or solid interfaces.
The classification of optical sensors is associated with the nature
of the transduction mechanisms on which they are based, such as
absorbance, scattering, diffraction, reflectance, refraction, and
luminescence (including photo-, chemi-, electrochemi-, or bio-
luminescence). Different regions of the electromagnetic

DOI: 10.1021/acs.chemrev.8b00226
Chem. Rev. 2019, 119, 231-292


http://dx.doi.org/10.1021/acs.chemrev.8b00226

Chemical Reviews

spectrum are employed with the use of different optical
transduction methods, and a diverse set of parameters can be
measured for each; these include intensity, lifetime, polarization,
quantum yield, and quenching efficiency.”*’

In general, colorimetric and fluorometric sensors consist of
four key elements: a light source, a wavelength selection device
(e.g, filters or monochromator), a substrate or sample cell where
changes in absorbed or emitted light occur in the presence of
analytes, and a detector which is sensitive at the wavelength of
interest (Figure 1). Most recently, rapid growth of the number of

Figure 1. Scheme of a general spectroscopic setup: (a) reflection, (b)
refraction, (c) absorption, and (d) fluorescence emission. Reproduced
with permission from ref 62. Copyright 2013 Royal Society of
Chemistry.

efficient and integrated optical sensors has greatly facilitated the
development of new sensing platforms, including fiber optic
sensors, >> 71 planar waveguide devices,"*® and sensors based
on surface enhanced Raman spectroscopy (SERS)."””~"*” This
section will focus on the basis and classifications of colorimetric
and fluorometric sensor arrays as well as their optical
transduction methods involving UV—vis absorbance, reflec-
tance, fluorescence, and nanoparticle-based surface plasmon
resonance, along with the introduction of several new types of
imaging platforms. There are other classes of optical sensors,
based on chemiluminescent or bioluminescent systems, and
these are discussed elsewhere in the literature.'**~"**
Fluorescence is the most commonly used spectroscopic
method due to its higher sensitivity compared to most other
optical sensors. Fluorescence occurs when an electron from a
molecule is excited and then relaxes to the ground state by

emitting a photon from an excited singlet state (Figure 2a);
phosphorescence results instead when the excited singlet state
first undergoes a forbidden transition to an excited triplet state,
which then subsequently relaxes to the ground state (Figure
2b)."*¥'3* Fluorescence measurements take advantage of a
variety of parameters (e.g., fluorescence intensity, anisotropy,
lifetime, emission and excitation spectra, fluorescence decay, and
quantum yield) for data analysis, thus conferring substantial
flexibility to these approaches.'*>'* Generally, fluorescence
techniques can be divided into three major classes: intrinsic
fluorescence,'>”™'*° extrinsic fluorescence,'*"!** and differ-
ential fluorescent probes.*>'*>'**

Colorimetry, i.e., quantitative measurement of UV—vis
absorbance or reflectance, is one of the oldest analytical
methods,'*® dating back to even long before the beginning of
chemistry with simple “naked-eye” observations: there are
ancient Chinese medicine books, for example, that mention
color changes of silver needles or spoons to detect poisons (e.g,,
arsenic sulfides) in food."*® Colorimetric sensing is a fairly
straightforward technique, and the advent of universal digital
color imaging®>****'*” has diversified portable and effective
detection methods. While many colorimetric sensors make use
of the traditional three-channel visible range (i.e., partially
overlapping wavelength ranges corresponding to red, green, and
blue, RGB), sensors can also use a larger number of channels
with a narrower spectral range for each (i.e., hyperspectral
imaging), incorporate nonvisible wavelengths from near IR to
UV, or span this full wavelength range using hundreds of color
channels (i.e., full spectrophotometry). To simplify data analysis
and instrumentation, colorimetric methods often analyze
spectra only at a few discrete wavelengths (e.g., by using RGB
color imaging) or by selecting the highest peaks in UV—vis
spectra.

There are two fundamental requirements for the design of
optical sensors: they must be able to interact at least somewhat
selectively with analytes, and they must report or provide
feedback on such interactions through chromophores or
fluorophores, preferably with very high extinction coeflicients
or high quantum yields, respectively. Such optical sensors may
be semiselective (i.e., cross-reactive with multiple analytes) or

Figure 2. Electronic transition leading to (a) fluorescence emission at 4; and (b) phosphorescence emission at Ap. Adapted with permission from ref 1.

Copyright 2009 Springer.
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highly selective (i.e., specific for only a single analyte or class of
analytes). Structurally, optical sensors must thus contain a probe
moiety to provide some degree of molecular recognition
through interactions with the analytes and a reporter moiety
for optical transduction; a single molecule may (and often does)
serve both purposes. Dyes (i.e., molecular chromophores) and
nanoporous pigments (i.e., insoluble colorants) are often
chemoresponsive; that is, their colors (or fluorescent properties)
are dependent upon their chemical environment. pH indicators
are an obvious early example.'**”'*" In general, pigments, even
as micrometer sized solid particles, do not act well as sensors
because the very large majority of chromophores are not
accessible to analytes; a notable exception is the class of
nanoporous pigments, where the colorant centers are exposed to
analytes.'>' ="

While many chemical dyes and fluorophores satisty the
requirements of semiselective sensors, there are also a
considerable number of sensors (especially supramolecular
receptors) that interact very selectively with specific analytes but
do not respond via changes in their optical spectra. Macrocyclic
structures including cyclodextrins, calixarenes, cyclophanes,
crown ethers, cryptands, and cucurbiturils are generally
spectroscopically inactive but often display excellent molecular
recognition of guest species (e.g., ions and neutral
ligands).”>™"*” In order to convert these supramolecular
receptors into sensors, suitable chromophores or fluorophores
need to be attached to the macrocycle in a fashion that leads to
changes in optical signals upon analyte binding.

For example, a Li*-specific sensor based on a novel lithium
fluoroionophore and its polymer derivative has been successfully
applied to the clinical monitoring of cation concentrations in
blood (Figure 3)."*® The fluoroionophore is built on a

Figure 3. Structure of fluoroionophore that shows selective binding to
Li*. Reproduced from ref 158. Copyright 2007 American Chemical
Society.

tetramethyl “blocking subunit” of a 14-crown-4 as a selective
binding site of Li’, and 4-methylcoumarin is employed in this
case as a fluorophore. The sensor permits ratiometric detection
via the characteristic blue shift and quenching of the
fluorescence emission toward Li*. The sensor also exhibits
good reversibility and is free from the interference of pH change
and the other major biological cations (e.g,, K*, Ca**, and Mg*").

2. OPTICAL ARRAY SENSING: CONCEPTS AND
SENSORS

The mammalian olfactory system allows for the discrimination
among a huge number of chemical compounds or composite
mixtures over an enormous range of concentrations. Such high
specificity and efficiency derive from the pattern recognition by
the forebrain’s olfactory bulb of the responses from hundreds of
different types of olfactory receptor epithelial cells.">” This type
of molecular recognition is exactly an opposite case to the
traditional prototype of biospecificity, i.e., the lock-and-key

model of enzyme—substrate interaction. Optical array sensing,
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in a similar manner, can incorporate a wide range of cross-
reactive sensor elements for pattern-based interactions with any
given set of analytes.

2.1. Basis of Intermolecular Interactions

In applying the concept of pattern recognition to sensor arrays,
the selection of intermolecular interactions is critical to the
construction of effective colorimetric or fluorometric arrays.
Fundamentally, chemical sensing is molecular recognition, and
molecular recognition is the consequence of interactions
between molecules."®*™'%* As shown in Figure 4, there is a

Figure 4. Strength of physical or chemical intermolecular interactions
on a semiquantitative scale of enthalpy change. Such interactions are on
a continuum from the very weakest van der Waals to the very strongest
covalent or ionic bonds. Reproduced with permission from ref 62.

Copyright 2013 Royal Society of Chemistry.

wide range of different types of intermolecular interactions that
generate a continuum in strength of interaction (i.e., change in
enthalpy), from the weakest of interactions such as van der
Waals force to the strongest of covalent or ionic bonds. There is
a seamless transition from electrostatic ionic bonding, covalent
or coordination bond formation, Bronsted or Lewis acid—base
interactions, hydrogen or halogen bonding, charge-transfer and
m—r stacking complexation, dipolar or multipolar interactions,
and van der Waals and other nonspecific interactions (e.g.,
quadrupole—dipole).

The advantage of incorporating stronger interactions for
sensor arrays is to achieve both greater intrinsic sensitivity and
greater chemical selectivity. Coordination of some Lewis base
analytes (e.g, amines, thiols) gives a relatively high enthalpy
change ranging from ~40 to ~300 kJ/mol. In contrast, the
enthalpy change of physical absorption of analytes (e.g, into
conductive polymers) or adsorption (e.g, onto the surface of
metal oxide semiconductors) is only ~S to 10 kJ/mol. The
equilibrium constant of a typical coordination effect to metal
ions is ~10* times higher than that of a typical physisorption
process. More importantly, stronger interactions bring a much
wider range of chemical interactions than simple physical
absorption, and therefore one may probe a much higher
dimensionality and greatly improve the capability of distinguish-
ing highly similar compounds or complex mixtures.

Remarkably, almost all prior electronic noses (i.e., metal oxide
or conductive polymer sensors) relied exclusively on van der
Waals or physical adsorption as the primary interaction of
analytes with the sensor: these are the weakest and least specific
of sensor—analyte interactions. Disposable colorimetric sensor
arrays, however, provide a successful approach to overcome the
limitations of nonspecific interactions and to negotiate the
opposite trend in sensor sensitivity vs robustness, as discussed in
section 1. Colorimetric sensor arrays revisit an earlier, pre-
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Figure S. Example of a 1 X 40 linearized colorimetric sensor array using a wide range of chemical dyes, and cartridge packing of the array for gas sensing.
Reproduced with permission from ref 32. Copyright 2016 Royal Society of Chemistry.

: . N 148,163—165
electronic era of analytical chemistry in many aspects,

but with the addition of modern digital imaging imaging
platforms for accurate, prompt, and reproducible data
quantification,**%!66 716

Based on the chemical properties of sensor elements, an array
can probe a range of analyte—sensor interactions to generate a
wide span of molecular speciﬁcit)7.27’169 At one end, there are
individual sensors that are fairly “promiscuous”, i.e., highly cross-
reactive but less specific; these include polymers and polymer
blends with optical receptors that adsorb analytes primarily
based on hydrophobicity."’”'”" Promiscuous sensors can
contribute to the overall response of the sensor array but are
insufficient to provide deep differentiation among similar
analytes. At the other end, there are highly selective, or
“monogamous” sensors that respond exclusively to one analyte
or perhaps one closely related class of analytes. While
monogamous receptors can produce high specificity for specific
analytes, alone they will not form a sensor array that enables the
recognition of other groups of analytes and mixtures;'”* in
addition, the design and synthesis of such specific, “monog-
amous” sensors can be time-consuming and complicated. The
optimum optical sensor array will therefore incorporate a range
of colorimetric or fluorometric sensor elements with a diversity
of specificities and a wide range of chemical interactions.

2.2. Classification of Colorimetric and Fluorometric Sensor
Elements

As mentioned, two structural features are essential to the design
of colorimetric or fluorometric sensors: functionality sites to
interact with analytes, and a chromophore or fluorophore to
couple with the active site. The first factor implies that it would
be highly advantageous to have multiple classes of strong
chemical interactions involved, other than simply van der Waals
or physisorption.

Based on the types of intermolecular interactions that can
induce significant colorimetric or fluorometric changes, one may
divide cross-reactive, chemoresponsive dyes into five classes
(albeit with some overlap): (i) Bronsted acidic or basic dyes
(e.g, various pH indicators), (ii) Lewis acid/base dyes (e.g,
metal complexes with open coordination sites or metal-ion-
containing chromogens), (iii) redox dyes, (iv) colorants with
large permanent dipoles (ie. zwitterionic vapochromic or
solvatochromic dyes) for detection of local polarity or hydrogen
bonding, and (v) chromogenic aggregative materials (e.g.,
plasmonic nanoparticles and nanoscale transition metal
sulfides). In addition, the matrix holding those dyes also can
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play a role in the improvement of their chemical selectivity,
either by modifying the local environment of the dye or by
immobilizing the dye molecules in a sterically confining
surrounding (e.g., molecularly imprinted polymers). The early
versions of colorimetric sensor arrays’”'”® were made of
porphyrins and metalloporphyrins as sensor components and
utilized mainly Lewis interactions with the metal and Brensted
interactions with the free base porphyrins. With the addition of a
wider range of chemical dyes, the diversity of sensors has been
impressively broadened over the past decade.””'*” For example,
arecently developed 40-element sensor array comprising a wide
range of chemoresponsive dyes has shown promising
applications in the detection of toxic or explosive vapors (Figure
5) 2732174173

The choice of individual sensor elements in an colorimetric or
fluorometric sensor array is fundamentally determined by its
intended use: for example, is the array meant for a broad range of
analyte detection or will it be used for a specialized class of
analytes only? If one uses probes that only measure local polarity
(e.g., solvatochromic or vapochromic fluorescent probes doped
into various polymers'’®), then one may lose the opportunity for
effective detection of different, but somewhat similar polar
compounds. Keep in mind that potential analytes vary in many
aspects of their chemical properties: solubility, hydrophilicity,
redox, hydrogen bonding, Lewis donor/acceptor, and proton
acidity and basicity of targets need to be taken into account. In
general, a comprehensive optical sensor array for general sensing
purposes should integrate as much chemical diversity among the
individual sensor components as possible. Given the presence of
metal ion binding sites in the olfactory receptors them-
selves,""™"” inclusion of metal-ion-containing dyes plays an
important role in the construction of a chemoresponsive sensor
array. One must also consider the presence of possible
interferents by ambient, complex environments that may cause
false positive responses. Finally, the dye properties themselves
must be considered: stability of the printed dyes, printability of
the dye formulation, and quantitative contribution of the dye to
both the responsiveness and the dimensionality of the array.
While these criteria can be applied quantitatively in evaluating
the importance of the addition of a new dye to the array,
fundamentally the tests are empirical and screening of dyes and
dye formulations is inescapable.

2.2.1. Lewis Acid/Base Dyes. 2.2.1.1. Lewis Acidic Dyes.
Most of the strongly odiferous compounds are Lewis bases:
amines, carboxylic acids, sulfides, and phosphines. Not
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Figure 6. Structures of representative chemoresponsive dyes, including porphyrins or porphyrinoids, and others containing Lewis acid metal ions.

coincidentally, these are also among the most common volatile
metabolites of microbes; arguably, the primary function of the
olfactory system is to keep our body away from high
concentrations of bacteria or other microorganisms, and hence
the location of our nostrils immediately above the mouth!
Inspired by the important role that metal-binding sites of
olfactory receptors play in sensing such Lewis bases,'’™'* Lewis
acid dyes are an obvious sensor choice.

Among Lewis acidic dyes, metalloporphyrins®”®""”" 7% are a
popular choice for the detection of metal-ligating volatiles due to
the open axial coordination sites and the large color changes
from both wavelength and intensity shifts of strong m—n*
absorbances upon ligand binding. Metalloporphyrins can be
readily modified to adjust their chemical reactivity by changing
metal centers or peripheral substituents to provide shaped
pockets that restrict the access to the metal binding sites. This
steric effect was first explored by the Collman group'*"'** using
picket-fence Fe(II) porphyrins for reversible binding of O,, and
later expanded by other groups. Of special interest was Suslick’s
development of a series of shape-selective, bis-pocket metal-
loporphyrins'**~'* that display distinctive steric hindrance
toward bonding sites, thus demonstrating potential uses as
colorimetric sensors in the discrimination of linear vs branched
amines.'”” A wide range of both ligating volatile organic
compounds (VOCs) (e.g., amines, carboxylic acids, phosphines
and phosphites, thiols) will generate large color changes with
metalloporphyrin sensors.”°"!77 715

Indeed, examples of metalloporphyrins as strong Lewis acid
indicators can be found in daily life. The difference in color of
scarlet red arterial blood versus the purple of venous blood is a
natural example of the colorimetric detection of O, using
porphyrins. In addition to the intrinsic binding, porphyrins also
possess excellent solvatochromic properties that lead to
distinguishable colorimetric changes before and after inter-
actions even with analytes that lack strong li§ating functionalities
(e.g, arenes, halocarbons, or ketones).5 Therefore, metal-
loporphyrins and their derivatives are an ideal group of dyes for
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colorimetric or fluorometric (for d'° tran-

sition metals primarily) detection of metal-ligating volatiles.
Representative examples of porphyrins, porphyrinoids, and
other types of Lewis acid/base dyes that have been used as
optical sensors are shown in Figure 6.

2.2.1.2. Lewis Acidic Dyes for Anion Detection. The
coordination of anions was a long-overlooked area of inorganic
chemistry. The biological and medical significance of many
anions, from the simple (CI~, F-, NO;~, PO,*", H,PO,*", etc.)
to the complex (e.g., ATP, lipid anions, nucleic acids, and other
phosphorylated biomolecular ions), has demanded and received
much greater attention in recent years."”” Anion recognition
chemistry also plays an essential role in catalysis and
environmental sciences.

Recently, substantial efforts have been made in the design of
anion receptors for sensing by colorimetric or fluorometric
means. The use of Lewis acidic dyes for the detection of anions
has been extensively reviewed recently.'”*™>°® Unique chal-
lenges still remain in anion complexation. Anion receptors can
be neutral or positively charged and anion—receptor interactions
are often dominated by electrostatic forces or hydrogen
bonding. To build an anion sensor, one can use a Lewis acid
that is inherently fluorescent or combine a chromogenic or
fluorescent reporter moiety with a specific chelating receptor.

Dye displacement assays, indicators with urea, thiourea, or
naphthalimide, and metal ion containing chromogens (espe-
cially lanthanide and labile d® and d'° transition metal ions),
have been extensively explored in the past few years for the
colorimetric or fluorescent detection of anions.”””™*'* As an
example, Kakuchi and co-workers have developed a novel
poly(phenylenebutadiynylene) fluorescent probe that contains
urea functionalities for anion detection (Figure 7). A
fluorescence turn-on response is ascribed to an anion-triggered
disassembly process of the initially formed polymeric aggregates.
The sensor allows for accurate discrimination of eight different
anions at ~1 mM with distinct fluorescent intensities. Using
aggregated polymers with rationally designed functionalities as
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Figure 7. Schematic illustration of fluorescence turn-on sensing of
anions based on disassembly of initially nonfluorescent (self-quenched)
polymer aggregates upon anion binding. Reproduced from ref 213.
Copyright 2012 American Chemical Society.

novel sensor elements has proven to be a promising strategy for
anion sensing and contributes greatly to the understanding of
supramolecular chemistry of anions.

2.2.1.3. Lewis Basic Dyes for Cation Detection. Lewis bases
include mostly chelating and macrocyclic ligands that can have
extremely high affinities for Lewis acids. Modern supramolecular

chemistry finds its origins in the design of crown ethers,
cryptands, cyclodextrins, and calixarenes, whose sizes govern
their specific binding of metal ions.'*>~"*” Indeed, the beginning
of the use of semispecific chelating Lewis acidic dyes as
colorimetric sensors for metal cation detection,lsg’ZM_217 o
called complexometric indicators (Figure 8) *'% dates back over
150 years. Many of the traditional complexometric indicators
were discovered in the early 19th century from nature products
and are widely manufactured and used as histological stains
nowadays.

Complexometric indicators”'”**° have chelating sites that
enable strong coordination with metal ions and induce a rapid
color change, often with significant selectivity among possible
metal ions. These ionochromic dyes, or pM indicators (as a class
of analogues to pH indicators) are designed to bring about a
color change during the interaction any given metal ion.*'***!
Complexometric indicators, depending on their chemical
structure, may have greater or lesser degrees of specificity: as
examples, Eriochrome Black T is used to detect Ca™, Mgz*, and
APP*; calcein is used for Ca®*; hematoxylin is used for Cu®*;
murexide is used for Ca**, Ni**, and rare earth ions; and xylenol
orange is used for Ga®', In**, and Sc**. The classical
complexometric titrations are on the basis of displacement
reactions, which start with the metal ions bound to the indicator
and then replaced by the addition of EDTA, so the free dye
molecule (rather than the metal ion complex) acts as the end
point indicator. The limited selectivity of indicators and the
presence of multiple pK, values of the chelators, however,
usually require the addition of masking agents and a careful
control of pH during the titration. Those strict requirements call

I SO-

Figure 8. Complexometric indicators. (a) Several traditional indicators used for complexometric titrations. (b) Representative metal complexes of

calcein, murexide, and EDTA, from top to bottom.
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Figure 9. Schematic illustration of ion-selective nanospheres for complexometric titration of Ca**. Solvatochromic dye resides in the nanospheres
when no Ca®" is present, while it is exchanged by Ca®* into the aqueous solution at the end point, with a color transition from blue to pink. Reproduced

from ref 224. Copyright 2015 American Chemical Society.

Figure 10. Some naturally occurring pH indicators. Litmus is from a lichen, delphinidin from cabernet sauvignon, cyanidin from blueberries, and

rosinidin from rose periwinkle.

for a new design of complexometric indicators that are pH
independent, sensitive, and selective. Recent advances in this
area have taken advantage of either cross-reactivity of solution-
based arrays of complexometric indicators, or pH-independent
titration in a heterogeneous phase rather than a homogeneous
aqueous phase. Successful examples include the use of a
microtiter plate,222 an immersed membrane,’*® and, very
recently, an emulsified nanosphere”***** for selective recog-
nition of individual metal ions in water.

As arecent example using a nanosphere emulsion, Bakker and
co-workers developed pH-independent “optode” nanospheres
as indicators for complexometric titrations (Figure 9), which can
accurately quantify Ca** concentration in mineral water without
interference from other metal ions.”** The nanospheres contain
an ionic solvatochromic dye, ion exchanger, and ionophore: only
the solvatochromic dye will be expelled into the aqueous
solution at the end point, resulting in a significant colorimetric
change. The titration curves are independent of pH change and
have sharper end points than with previously reported
complexometric sensors or any similar indicators.
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2.2.2. Brgnsted Acid/Base Dyes. The origins of chemistry
as a discipline are closely related to our obsession with “pretty
colors”, and the contribution of the dye industry to the early
development of chemistry cannot be understated.””*"*** The
colors of Bronsted acids or bases are pH-dependent; i.e., their
UV-—vis absorption spectra change through protonation or
deprotonation as the pH changes. Litmus, or 7-hydroxyphenox-
azone, is a representative pH indicator that was available to
alchemists even in medieval times; litmus literally means
“colored moss” in Old Norse, which is extracted from a mixture
of lichens, particularly Roccella tinctoria in South America. There
are dozens of pH indicators that can be obtained naturally from
many plants, especially the anthocyanin dyes that are abundant
in blueberry, raspberry, black rice, red cabbage, and black
soybean (Figure 10).

Synthetic pH indicators received tremendous attention
during the first half of the 20th century,148 but even now there
is substantial exploration of new pH indicator formulations.'*’
For example, there are recent developments of indicator
nanoprobes using indicators immobilized in polymer hydrogels
for intracellular sensing,229 and a wide range of organic
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Figure 11. Several some typical pH indicator dyes.

Figure 12. Structures of some common pH-independent redox dyes. (a) Six representative redox dyes. (b) Detection mechanism of triacetone
triperoxide (TATP) using N-isopropyl-N’-phenyl-p-phenylenediamine. (c) Colorimetric recognition of general aldehydes and ketones using 2,4-
dinitrophenylhydrazine, 4,4'-azodianiline, and pararosaniline. Reproduced from ref 242. Copyright 2010 American Chemical Society. Reproduced

with permission from ref 243. Copyright 2017 Wiley.

chromophores (e.g., azo dyes, triphenylmethane dyes, nitro-
phenols, phthaleins, sulfophthaleins, aniline-sulfophthaleins)
have been prepared to determine the pH of aqueous solutions
or as histological stains for biological uses.”*>**" The pK, values
among various pH indicators in aqueous solutions range, of
course, from below 0 to above 14, depending on the ease of
protonation or deprotonation. The examples of some pH
indicators that have been incorporated in colorimetric sensor
arrays are shown in Figure 11.

2.2.3. Redox Indicator Dyes. Reduction/oxidation
(redox) indicators are colorimetric reagents which provide a
characteristic color change at a specific electrode poten-
tial>**7>*° There are a large number of organic dyes exhibiting
reversible redox reactions, including bodipy, o-dianisidine,
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diphenylamine, eriogreen, fenamic acid, methylene blue, Nile
blue, and 2,2'-bipyridine.”*”~**’

Due to the participation of protons in the electron transfer
process in most media, redox indicators are sometimes classified
into two groups by whether they are pH dependent or not. For
example, to build an optical sensor for sensitive and accurate
determination of glucose (i.e., in the concentration range 10™°—
107> mol/L, with high reproducibility), a thionine-based
reversible redox sensor was immobilized on gel beads to
monitor the level of byproducts (e.g, a coenzyme, NADH)
involving enzymatic redox reactions of glucose.”*' A linear
calibration range of 5.7 X 107*—2.0 X 10> mol L ™" was achieved
for glucose, with a relative standard deviation of <5%. As another
example, to detect triacetone triperoxide (TATP) vapor at sub
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Figure 13. Structure of some representative solvatochromic dyes. (a) Three typical solvatochromic dyes. (b) solvatochromic shifts of a merocyanine
dye, 1-methyl-4-[ (oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine, in various solvents with different polarities. (c) Frontier orbital energy

changes for negative solvatochromism (e.g, as in merocyanine dyes).

parts per million levels (i.e., in the range from 50 ppb up to
several parts per million), a colorimetric sensor array comprising
o-dianisidine, diphenyl amine, N-phenyl-1,4-phenylenediamine,
N,N’-diphenyl-1,4-diphenyldiamine, and Lissamine Green B
(Figure 12) was constructed by Lin and Suslick.”** Using a solid-
state acidic catalyst that enables the decomposition of TATP to
more detectable species (i.e., hydrogen peroxide and acetone),
the array was capable of detecting vapor concentrations of
TATP below 2 ppb and distinguishing TATP from other
chemical oxidants.

2.2.4. Solvatochromic or Vapochromic Dyes. Solvato-
chromic or vapochromic dyes***~>*” undergo color changes in
response to changes in the polarity of the local environment; the
mechanism comes from differential stabilization of the more
polar of the ground or excited states of the chromophores. If the
excited state has a larger dipole moment than the ground state, it
will be more stabilized relative to the ground state in a more
polar environment—positive solvatochromism—and vice versa.
Nearly all dyes intrinsically show more or less solvatochromic
properties. Optimal solvatochromic dyes have the largest
changes in dipole moments. The spectral changes can be so
large that dramatic color or fluorescence changes will be
observed, depending on the polarity of the solvent where the dye
is dissolved (Figure 13).

Common classes of solvatochromic dyes include the
merocyanines, azobenzenes, thiazines, oxazones, nitro-amino-
substituted polythiophenes, and pyridinium N-phenolate
betaine dyes (Figure 13). A common structural feature of
most solvatochromic dyes is that they have “push—pull”
structures with a strong zwitterionic component to their
electronic structure, i.e., a large conjugated 7 system with strong
electron donor groups at one end and strong electron
withdrawing groups at the other.

A series of solvent polarity scales”** have been proposed to
quantify the interactions between solvatochromic dyes and
solvent molecules. Different physicochemical properties can be
used to define such scales, including both single-parameter
approaches that solely depend on equilibrium constant, reaction
rate constant, or wavelength shift, and multiparameter
approaches that combine several properties. Some important
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polarity scales include Reichardt’s E+(30), Brooker’s yy scale,
and Taft’s 7* scale.”**~**” A cross-reactive colorimetric sensor
array comprising solvatochromic dyes in semiliquid matrices
was reported by Suslick and co-workers that enables successful
identification of 11 common organic solvents, with polarities
evenly distributed over a broad range of E;(30) values.'”®
Solvent polarity is a multiparameter property that is determined
by dipolar, quadrupolar, and multipolar interactions, hydrogen
bonding donor and acceptor properties, Lewis acid—base
interactions, etc. Studies on the thermodynamic and theoretical
analysis of the origin and mechanism of solvation, solvent
polarity, and solvatochromism are carried out actively;***~>**
especially useful are interrelations and comparisons between
different solvent scales and new methodologies to relate scales to
theoretical descriptors.”*”**° Of particular interest for optical
sensors, innovations in the structures of solvatochromic dyes,
such as the design of phenol-linked imidazole derivatives that
exhibit remarkable color change via proton tautomerism, have
shown potential uses as the next generation of solvatochromic
dyes in the construction of environmental stimuli-responsive
materials.”>' In addition, sensor arrays using primarily
solvatochromic dyes have been examined for identification
and purity of organic solvents from a head-gas analysis.'”®
Solvatochromic probes in combination with bioimaging
technologies have also been extensively explored for the
detection of a wide range of biomolecules involving nucleic
acids, proteins, and biomembranes.**

A separate class of solid-state materials that can change color
in response to solvent vapors are referred to as vapochromic or
vapoluminescent solids. A number of organometallic or
coordination complexes have been identified as vapochromic
pigments, the majority of them coming from square planar
Pt(I) and Au(I) compounds.”***** The vapochromism is
induced by intercalation of solvent molecules into the crystals,
and the color or luminescence changes stem from relatively weak
interactions within the solids including coordination of solvent
molecules to the metal binding sites, 7—7 stacking, hydrogen
bonding, and general nonspecific host—guest interactions; these
interactions can lead to changes in the ordering of excited states
and therefore cause significant luminescent differences. Chiral
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vapochromic complexes have been used for enantiomerically
selective detection of chiral solvent vapors.”®® A particularly
remarkable example has been recently reported using a chiral C;-
symmetric Cu(I) cubane cluster, [Cu,l,(TMP),] (TMP =
tris(3-methylphenyl)phosphine), which possesses excellent
properties in luminescent thermochromism, solvatochromism,
and vapochromism.”*® The limitations of vapochromic materi-
als, however, remain in the very slow response time due to the
slow diffusion of vapor molecules into the solid materials, and
the weak interactions involved that restrict their selectivity and
sensitivity as sensors. One potential solution is possibly to
develop nanoscale and porous coordination complexes that may
efficiently reduce diffusion time and expand surface area for
analyte exposure, thus enhancing interactions occurred at the
solid—gas interface.

2.2.5. Chromogenic Aggregative Indicators. The syn-
thesis of chromogenic indicators whose color is induced by
particle aggregation has become a hot area of research and has
achieved massive progress in recent years. The early version of
aggregative indicators, e.g., simple precipitation of metal salts or
formation of metal nanoclusters upon reactions with sulfides,
indeed derives from classical qualitative spot tests."®*™'** In
recent developments, nanomaterials of all sorts,>>7 723 including
metallic and metal oxides, carbon-based nanotubes, graphene
variants, carbon dots, or quantum dots, have been employed as
chromogenic aggregative probes and widely applied to
biosensing or immunosens,ing.Z(’4_267 Processes that cause
aggregation, dispersion, or formation of colloidal materials
generate changes in color or fluorescence through multiple
optical mechanisms, including the simple absorption or
scattering of colloidal particles, plasmonic absorbance, aggrega-
tion-caused quenching (ACQ), or aggregation-induced emis-
sion (AIE) of luminescence.

Critical to the use of chromogenic aggregative sensors is
control over the nanostructure of the sensing nanomaterials. For
example, a fluorescent “off—on” type probe can be built on gold,
silver, or copper nanoparticle agglomerates®® that effectively
quench attached or adsorbed fluorophores, while fluorescence
will be recovered with the release of fluorophores or dispersion
of agglomerates induced by analyte binding.”**"*"" Prudent
choice of particle functionalization and of fluorophore provides
a versatile platform for solution phase sensing.

2.2.6. Displacement Strategies for Fluorescent Sen-
sors. In general, there are three classes of fluorescent probes for
chemical sensing in solution: (i) intrinsic probes (where the
sensor is itself fluorescent); (ii) conjugated or extrinsic probes
(where a fluorophore is attached or conjugated to the sensor
binding site and its fluorescent property is modulated by analyte
binding); (iii) displacement or differential probes (where the
analyte species competitively binds to an artificial or natural
receptor that has already bound a fluorophore, and the release of
the fluorophore causes a change in the fluorescent sig-
nal). "1 31442727275 Digplacement probe strategies require a
reversible interaction between a receptor and a reporting
fluorophore/chromophore; the binding of the receptor
molecule must trigger differences in fluorescence or UV—vis
absorbance of the reporter; the receptor can be designed to be
either highly specific for a certain class of analytes or more
promiscuous if used as part of an array.

Indicator displacement assays that use a parallel set of multiple
not-too-selective displacement probes are often referred to as of
differential selectivity and generate a pattern of responses
somewhat similar to the aforementioned, cross-reactive
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colorimetric sensor arrays. This strategy has been well-
established by the Anslyn group in the recent dec-
ade.'*3144272273:276 A potential disadvantage of displacement
methods is diminished sensitivity due both to the requirement of
reversibility of the fluorophore binding and to the necessary
binding competition between the incoming analyte and the
already bound fluorescent or colorimetric reporter.

Sensor arrays are normally thought of as single physical solid
devices, e.g, a printed solid-state sensor array on substrates such
as a polymer membrane or a set of fiber optic probes.
Displacement strategies, however, are generally limited to
solution phase sensing and do not lend themselves easily to a
printable sensor array that could be immersed in a solution of
analytes. Instead, solution phase array sensing has to be carried
out by parallel analyses of multiple aliquots of the analyte
solution, each with an added, distinct homogeneous probe, e.g.,
using microwell plates with a microwell fluorescent scanner.

As an example, Anslyn and co-workers have cleverly employed
different commonly available serum albumins with a set of
fluorophores as nonspecific probes for hydrophobic mole-
cules. 172277278 1y this case, nonspecific hydrophobic binding
interactions were combined with an indicator displacement
strategy to provide multiple sites for AIE-active (aggregation-
induced emission) probes within a single albumin framework, as
shown in Figure 14. This led to the sensor’s capability of
classifying hydrophobic, structurally similar species, i.e., edible

172,27
oils.

Figure 14. Schematic representation of a displacement strategy using
serum albumin proteins as a nonspecific receptor to detect hydrophobic
analytes. Indicators are initially bound in disparate binding sites of
albumin proteins, and significantly increased fluorescent signals are
induced upon their displacement. Reproduced from ref 46. Copyright
2015 American Chemical Society.

2.2.7. Molecularly Imprinted Sensors. One way to
improve the selectivity of optical sensors against potential
interferents is the use of molecular imprinting approaches.”****'
Molecularly imprinted polymers (MIPs) are created by the
polymerization of monomers (and cross-linking agents) with
potential receptor site functional groups in the presence of a
target molecule (ie., the template). The template is then
exhaustively removed after the polymer is formed, thus leaving
complementary cavities with tailor-made binding sites for
specific analyte recognition. Generally, the monomers used for
synthesis are required to possess or combine with functionalities
for target applications. Common analytes for molecularly
imprinted polymer sensors include molecular, ionic, nano-
composite species, and enantiomers.”** "% MIPs have to be
sufficiently cross-linked to retain internal structural integrity, but
not too rigid to prevent template removal. Similar to
displacement assays, MIP sensors are also generally limited to
detections in solution phase and have potential problems of
limited sensitivity and remnant trace analyte.

MIP sensors have been broadly applied to the screening of
explosives. For instance, Xu and co-workers designed a
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molecularly imprinted sensor for 2,4,6-trinitrotoluene (TNT)
detection (Figure 15).2%¢ The sensor was constructed through a

Figure 15. Schematic representation of a quantum-dot-encapsulated
molecularly imprinting sensor based on a sol—gel seed-growth method
that gives an easily distinguishable fluorescence response to TNT.
Reproduced from ref 286. Copyright 2013 American Chemical Society.

sol—gel seed-growth approach, using functionalized siloxanes as
monomers and trinitrophenol as a dummy template, and then
capped with CdTe quantum dots as fluorophores. The sensor
shows selective binding affinity to TNT against other possibly
competing explosive molecules with distinct fluorescence
quenching.

It is also possible to use discrete soluble macromolecules as
molecularly imprinted macromolecules. Zimmerman, Suslick,
and co-workers, for example, created cross-linked dendrimer
substituted porphyrins based on octa-substituted bis-pocket
porphyrins and then hydrolyzed away the central porphyrin. The
resulting hollow dendrimer showed excellent selectivity for
binding specific substituted porphyrins that fit the hollow left in
the dendrimer.”*”*%

3. SENSOR FABRICATION AND INSTRUMENTATION

3.1. Array Fabrication: Substrate Considerations

3.1.1. Printed Arrays. While the choice of chromophores or
fluorophores will dominate the optical response, there are other
factors that are important to the efficacy of the sensor array:
most notably, the formulation of the dye (included added acids
or bases and the plasticizer or matrix in which the dyes are
immobilized) and the substrate upon which the dye
formulations are printed. Sensitivity, response time, reproduci-
bility, selectivity, susceptibility to interferents, and shelf life of
the sensor array will be heavily influenced by the choice of
substrates and matrices of the colorants.

A common weakness in many electronic gas sensors is their
sensitivity to changes in ambient humidity.**”>"*" For any real-
world applications, humidity changes from day to day or from
indoors to outdoors are often tens of thousands parts per million
in water vapor concentration. Any significant response to
humidity proves fatal to the detection of parts per million levels
of VOCs. One solution to the reduction of array response to
humidity over a wide range (10 to ~100% relative humidity) is
to use hydrophobic materials as both matrices and substrates of
sensor inks.””"1*1 7180 Sufficiently humidity-unresponsive

arrays sometimes can even be applied to aqueous phase
. 32,40,43,289
sensing.
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A large number of solid supports have been used for the
construction of colorimetric and fluorometric arrays. The
desired properties of such substrates include good chemical
resistance (e.g,, stability toward acids or bases, gases, or
solvents), high surface area (for sufficient contact with analytes),
suitable permeability, optical transparency or high reflectivity,
ease of handling, etc.””’~>"* A simple method for production of
colorimetric sensor arrays was developed by the Suslick group,
involving robotic dip-pen printing dye formulations on the
surface of reverse phase silica gel plates, acid-free paper, or
porous membranes made of polymeric materials including
polyethylene terephthalate (PET), polyvinylidene difluoride
(PVDF), and polypropylene (PP).””**'***** Various methods
have been used to print colorimetric sensor arrays, including
spin-coating””* (which cannot adequately print arrays using
multiple spots), ink- or aerosol-jet printing,””>**° and a modified
robotic microarray pin printer (Figure 16) used to print spots
with controllable shapes.**

Figure 16. Robotic pin printer (upper) with a printhead holding an
array of rectangular pins (lower) that enables the mass production of
colorimetric sensor arrays (~200 arrays/h). Adapted with permission
from ref 32. Copyright 2016 Royal Society of Chemistry.

For chemical sensing applications, one class of formulations
uses soluble molecularly based dyes with an added plasticizer
deposited as viscous films on polymeric membranes with high
surface area (which allows analyte molecules to access the
dissolved colorants within an acceptable response time). In
contrast, pigments (which by definition are insoluble colorants)
are generally impermeable to analytes and therefore reactive
only on the periphery of the colorant, which dramatically
reduces any colorimetric or fluorometric response to the
presence of analytes. Molecular-based dyes, however, can have
a limited shelflife as sensors, particularly when incorporated into
viscous polymer films due to the crystallization of dyes that
diminishes analyte accessibility to the colorant centers. >
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An alternative formulation makes use of nanoporous pigments
made from dyes embedded in hydrophobic porous sol—_;el
glasses to generate chemically responsive colorants.">>**%**” A
useful nanoporous pigment sensor array can be made by
immobilizing chemoresponsive dyes in organically modified
silicate (i.e., “ormosil”) prepared from the hydrolzrsis of suitable
silane monomers in high-boiling-point solvents.””'>>'7>**% In
addition, the physical and chemical properties of the matrix (e.g,,
hydrophobicity, porosity) can be readily adjusted using different
ormosil formulations, and different solubilities of dye molecules
may require the addition of silane precursors with different
functional groups.'** The use of nanoporous pigments
significantly improves the stability and shelf life of the
colorimetric sensor arrays and allows for the direct dye printing
onto nonpermeable polymer surfaces. Furthermore, we have
indeed observed that the silicate sol—gel matrix may serve as a
preconcentrator for analyte molecules, hence improving the
overall responsiveness of the array.

Regardless of the formulation, the open question remains as to
how many different printed sensors is optimal for a sensor array.
In principle, it is always advantageous to have a greater number
of sensors with more chemically diverse dyes. In practice,
however, the quality of the printing, the reproducibility of each
sensor spot’s response, and the inconvenience of preparation of
formulations impose significant limitations on the practical
limits of the sensor array size. Although arrays have been
prepared with as many as 144 individual colorimetric sensors, in
general 20 to 40 sensors present a “sweet spot” in terms of the
compromise between convenience and data quality.

RGB color analysis of the sensor spot image shows that
printing of these nanoporous pigments can give a uniform color
distribution across the center of the spot (Figure 17).'>

Figure 17. RGB values of a line scan across the diameter of a typical
sensor spot, which is made of an ormosil colorant and printed on PET
membrane. Reproduced with permission from ref 152. Copyright 2011
Royal Society of Chemistry.

Reproducibility of the optical densities of printed spots can be
excellent, and colorimetric sensing experiments generally
compare before- and after-exposure images of the sensor array,
which further reduces errors in the pattern analysis. Note that it
is important in the image analyses of the printed spots to utilize
the average RGB values of the central portion of each printed
spot to eliminate artifacts from the spot edges.'®

The development of optically based chemical sensing
platforms has increasingly employed substrates fabricated with
advanced processing techniques, and their overall morphologies,
especially some microstructures or nanostructures, must be fully
characterized in order to gain a comprehensive insight into
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optimization of their function. Scanning electron microscopy
(SEM) has shown that the printed nanoporous pigment films
are typically ~3—4 pm thick with uniform silicon distribution
throughout the spot (Figure 18); transmission electron

Figure 18. SEM micrograph of the cross section (top left), EDS
elemental mapping (on Si) of a typical sensor spot (top right), and
AFM micrograph (bottom) showing the height of the nanoporous
pigment at the spot center compared to the base height of the polymer
membrane. Inset displays the structure of surface pores (<100 nm). The
spot is made of an ormosil colorant and printed on PET membrane.
Reproduced with permission from ref 152. Copyright 2011 Royal
Society of Chemistry.

microscopy (TEM) along with atomic force microscopy
(AFM) micrographs reveal the presence of nanopores (<100
nm in diameter) in these ormosil films, which assist in mass-
transport process, and are responsible for the fast response times
observed during gas sensing experiments (~90% response
generally occurs in <2 min for most VOCs).'**

Another means of 1producing nanoporous dyes has been
reported by Bang et al.”>* using an ultrasonic-spray aerosol—gel
pyrolysis method to synthesize silica microspheres from
tetramethoxysilane (TMOS) and methyltrimethoxysilane
(MTMS) precursors. The as-synthesized materials have a well-
defined porous microstructure that permits the sufficient
encapsulation of pH indicators and solvatochromic dyes for
effective identification of amines.

3.1.2. Fiber Optic Arrays. A powerful array-based tool for
the construction of cross-reactive fluorescent sensors is the fiber
optic array. Over the past 20 years, Walt and co-workers have
pioneered a fluorescence-based platform combining multifiber
optical bundles with microwell arrays for measuring analytes of
interest, particularly for biomolecules.”””**° The platform is a
chemically etched, two-dimensional array of microwells (total
size ~1 mm) comprising ~50 000 individual micrometer-size (2
to 10 um) fibers in which beads (i.e., synthesized microspheres)
functionalized with one or a few fluorescent probes embedded in
different polymers are randomly deposited. In order to identify
themselves during the measurement due to random positioning,
these beads are encoded with different types or concentrations
of dyes so as to determine the locations of each bead type. The
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Figure 19. General workflow of fabrication of MIP-based bead microarrays for selective recognition of an antibiotic, enrofloxacin (ENRO), and NIP
(i.e., polymers without template) microarray as a negative control. MIP and NIP beads are encoded with coumarin-30 (C30) and tris(4,7-diphenyl-
1,10-phenanthroline)ruthenium(II) dichloride respectively and incorporated in etched fiber optic bundles. Reproduced with permission from ref 301.

Copyright 2015 Royal Society of Chemistry.

physical properties and chemical compositions of the beads
must be carefully considered for effective analyte recognition.
The encoding schemes used, however, should not interfere with
analyte binding. A graphical representation that shows the
fabrication of an MIP-based fiber optic array is given in Figure
19;°°" SEM micrographs of the fiber optic bundles are shown in
Figure 20.

Figure 20. SEM micrographs of fiber optic bundles. (a) Optical-fiber-
based array (total size ~1 mm) with hexagonal pits contains ~50 000
optical fibers; inset shows magnified views of the individual fibers
(bright dots). (b) Structure of microwells with etched fibers. The
bottom face of each microwell is the optical fiber core, which has etched
into the surrounding clad. (c) Beads loaded into the microwells.
Reproduced with permission from ref 125. Copyright 2010 Royal
Society of Chemistry. Reproduced from ref 299. Copyright 2008
American Chemical Society.
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In an attempt to accomplish simultaneous, multianalyte, high-
throughput, and high-sensitivity analysis, the fiber optic arrays
are normally composed of thousands of individual single-core
fibers using a random assembly approach. The engineered
structure allows for each individual well to be recognized by the
optical fiber defining its base, providing a high-density array of
miniaturized sensors that can be simultaneously and independ-
ently interrogated by light. Excitation light is introduced into the
unfunctionalized end of the fiber, while emission signals from
individual sensor elements return through the fiber and are
magnified and projected onto a charge-coupled-device (CCD)
camera, thus generating a pattern of fluorescence response for all
sensors.”””

These fiber-based optic sensor arrays have shown remarkable
applications in biological sensing through the immobilization of
desired biomolecular probes***~*%° and even whole cells*****”
in the fibers. Of special interest is the use of digital enzyme-
linked immunosorbent assay (ELISA) on a single-molecule
array (“simoa”)***~>'* for the sensitive protein quantification at
or around picomolar concentrations. The single-molecule array
is indeed a femtoliter-sized reaction well, which provides an
ultrasensitive method for counting single protein molecules,
thus permitting the detection of low numbers of protein
molecules with a wide dynamic range.

3.2. Instrumentation: Digital Imaging of Colorimetric and
Fluorometric Sensors

3.2.1. Digital Imaging of Colorimetric Sensor Arrays. A
miniaturized system that is of low power and low cost but of high
stability and high sensitivity is always welcomed in the design of
novel sensing devices. For devices capable of reading
colorimetric sensor arrays (or with proper illumination
fluorometric arrays), one may take advantage of the rapid
recent advances in digital imaging technology: flatbed scanners,
digital cameras, contact image sensors (CISs, used in business
card scanners), and cell phones.

From digital analysis of colorimetric dye arrays, one can
obtain the characteristic sensor array response of individual
compounds or complex mixtures. Using red, green, and blue
(RGB) wavelength regions in lieu of full spectrophotometric

DOI: 10.1021/acs.chemrev.8b00226
Chem. Rev. 2019, 119, 231-292


http://dx.doi.org/10.1021/acs.chemrev.8b00226

Chemical Reviews

Figure 21. Digital images of the 1 X 40 colorimetric sensor array (a) before and (b) after exposure to headspace gas of ammonium nitrate, and (c) a
scaled color difference map generated from the subtraction of the before and after exposure images. The color difference map represents the difference
vector in 120 dimensions. For purposes of display, the color range of difference maps is usually expanded from the effective dynamic range to the full
RGB display range (i.e., 4 bit color expanded to 8 bit color scale in this case, or 0—15 expanded to 0—255 in RGB values). Reproduced with permission

from ref 32. Copyright 2016 Royal Society of Chemistry.

analysis, the resulting data is represented as a vector of 3N
dimensions, where N = total number of sensor spots. Given
minor variations in printing, it is best to image the array before
exposure to analytes and subtract the resulting vector from that
obtained during or after exposure. Based on those color
difference vectors, statistical and quantitative analyses can be
performed in the multidimensional space. Maps of these color
difference values may be used for visualization of color changes
of the sensor array: displayed color values are generally the
absolute values of the differences, and color ranges are expanded
for effective visualization (Figure 21).

For colorimetric array sensing, images of sensor arrays are
commonly achieved on an ordinary flatbed scanner in a
laboratory environment, which can provide high resolution,
accurate positioning, and constant illumination for imaging. For
environments outside the laboratory (e.g., in the field),
development of a portable, low-noise, and inexpensive optical
instrument with the capability of onboard analysis is necessary.
Several imaging devices have been developed for digital data
collection, including a customized handheld reader imbedded
with a color contact image scanner,”**% 2 commercial CCD
digital camera,””* and even a cell phone camera.’'' Based on the
array images collected during analyte exposure, a color
difference map (Figure 21) can be easily generated by digital
subtraction: red value of after-exposure image minus red value of
before-exposure one, green minus green, and blue minus blue.
Averaging of the centers of sensor spots effectively avoids edge
artifacts caused by the nonuniformity of the printed spots. The
other purpose of using color differences in RGB values is to
cancel out discrepancies in color of either before- or after-
exposure images resulting from variability in printing or small
changes in lighting (e.g., due to temperature fluctuations), as the
color differences are only a weak function of variations in the
concentration of molecular dyes from array to array.'®

The recently developed handheld optoelectronic reader™® is a
truly portable, self-contained and inexpensive analytical device
for on-site collection and analysis of colorimetric data on a broad
range of gaseous or liquid analytes, including biomarkers,>!*
explosives,‘%l’32 food, and bevereages.243’312 The handheld device
employs a color contact image sensor (CIS) that is commonly
used in business card scanners, which contains a linear array of
complementary metal oxide semiconductors (CMOS) for
optical transduction (Figure 22).>"**'* CISs are much smaller
than charge coupled devices (CCDs), use typically a tenth as
much power, and are well-suited for low power and portable
applications. A CIS consists of a linear array of detectors that
receive light reflected off the object to be imaged through self-
focusing lens arrays (i.e., refractive gradient cylinders); the
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Figure 22. Handheld reader of colorimetric sensor arrays. (a) Labeled
photographs showing the design of the handheld reader (12.5 X 9.5 X
4.0 cm) including front, interior, and cartridge bay views. (b) Cross-
sectional schematic of a color contact image sensor (CIS), showing the
components positioned to read a linear colorimetric sensor array; the
red, green, and blue LEDs used for illumination are flashed sequentially
for color analysis, typically with >S5 MHz temporal resolution and >300
dpi. Reproduced from ref 58. Copyright 2015 American Chemical
Society.

illumination is provided in timed pulses of red, green, and blue
light-emitting diodes (LEDs). A sealed cartridge loaded with a
disposable, linear colorimetric array is tightly stacked on the CIS
for effective imaging during exposure of gaseous analytes. The
handheld reader also contains a diaphragm micropump for
control over gaseous analyte flow and onboard electronics to
provide instant and real-time measurements of red, green, and
blue reflectivity of the linearly arranged colorimetric sensor
array; programming modules are incorporated to perform
statistical evaluation of collected data.
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Figure 23. Reproducibility of sensor spot imaging as a function of position across the spot, showing the appearance of edge effects. (a) Comparison of
the observed noise from four imaging devices (i.e., digital single-lens reflex (DSLR) camera, smartphone, flatbed scanner, and color contact image
scanner (CIS)) vs distance from the physical center of the dye spot, averaged out of all sensor spots. (b) Expanded scale for the standard deviation of
the noise measured using CIS imaging; no significant edge artifact is observed for the CIS. A linearized, 29-element sensor array was used for all scans,
and observed noise for each spot was calculated and averaged for each pixel over 10 scans. Reproduced from ref 58. Copyright 2015 American

Chemical Society.

Figure 24. Comparison of sensor array responses on three devices.”” Color difference maps were averaged out of septuplicate trials after 2 min
exposure of a series of TMA concentrations collected by (a) flatbed scanner, (b) iPhone Ss camera, or (c) handheld reader. The color range is
expanded from 4 to 8 bits per RGB color (i.e., RGB color range of 4—19 expanded to 0—255). Reproduced from ref 311. Copyright 2016 American

Chemical Society.

The customized line scanner handheld reader provides 3—10
times higher signal-to-noise ratios than other scanning devices,
with the substantially decreased noise level across the center of
any spot (Figure 23).°° The reader was also examined to
compare to other methods for the acquisition of colorimetric
data (e.g, flatbed scanner vs cell phone camera, Figure 24) in the
detection of a typical biogenic amine, trimethylamine (TMA),
and, after sample preparation, trimethylamine oxide.” "> All
three sets of data give accurate classification results on different
concentrations of TMA vapors; low parts-per-billion-level
detection limits were achieved on all three devices: ~3 ppb for
handheld scanner, ~4 ppb for flatbed, and ~6 ppb for cell
phone.*

3.2.2. Cell-Phone-Based Microplate Reader. In the past
decade, a large number of handheld optoelectronic devices have
been developed for microplate technology”'®™*'* and have
demonstrated promising applications as easy-to-use imaging
tools for efficient biomedical sensing of complicated diagnostic
systems. These portable scanning instruments often integrate
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optical, electronic, and mechanical components with mobile
devices (e.g., digital camera, GPS, or cell phone) that enable on-
site, rapid, reproducible, and sensitive imaging and sensing of
biologically relevant analytes of interest. Among various choices
for such devices, smartphones with built-in cameras®*°~*** have
drawn tremendous attention due to their relatively low cost, high
portability, and high availability.

Very recently, Ozcan and co-workers developed a portable,
automated, and cost-effective cell-phone-based microplate
reader with nanometer level resolution for real-time biomedical
imaging.*****° The device contains a 3D-printed optomechan-
ical attachment to hold and illuminate a 96-well microtiter plate
using either a light-emitting-diode array or a laser diode
incorporated in an optical or fluorescence microscope for both
colorimetric and fluorometric sensing. The light is optically
transmitted through each of the 96 optical fiber bundles to each
individual well of the microplate; a sample region of interest is
imaged by the smartphone’s built-in camera module coupled to
afocusing lens (Figure 25). Captured images of the 96-well plate
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Figure 25. Portable 96-well microplate reader based on a cell phone
platform. (a) The portable device consists of a customized hardware
attached to the smartphone, which uses an LED array to illuminate 96-
well plates through a diffuser and optical fiber bundles. (b) Top view of
the device. (c) Side view of the device. Reproduced with permission
from ref 334. Copyright 2016 Nature. Reproduced from ref 326.
Copyright 2015 American Chemical Society.

are transferred to the servers, and data processing is performed
on a custom-designed application using a machine learning
algorithm,”*” which provides visualized diagnostic results within
1 min. The system has been successfully used for colorimetric or
fluorometric imaging of single DNA molecules, viruses, and
nanoparticles’**>*° and has shown a wide range of potential
applications particularly in point-of-care medical diagnosis
includin§ nucleic acid amplification tests,”' pathogen quanti-
fication,”** biomarker monitoring,333 and antimicrobial suscept-
ibility test.>**

4. STATISTICAL ANALYSIS AND MODELING

The output space of a chemical sensor has a total dimensionality
that depends on the number of chemical properties probed by
the sensor. A sensor that probes chemical reactivity rather than
physical properties (e.g., mass or dipole moment), for example,
may probe a very large number of chemical properties which are
partially or fully orthogonal to each other; these interactions
include Lewis acid/base, Bronsted acid/base, redox, hydrogen
bonding, etc. that ultimately affect reactivity. Differentiation
among chemical species using these types of sensors likewise
involves analysis within this high-dimensional output space, and
as such is potentially capable of differentiating among a huge
number of disparate targets. The evolved olfactory system takes
advantage of this sort of paradigm: the combined responses of
multiple cross-reactive sensors provide a high-dimensional
sensor space that is used by the olfactory bulb to recognize
patterns corresponding to particular odorants or families of
odorants.

In contrast, a sensor that takes advantage of weak physical
interactions (e.g., van der Waals interactions that are largely
responsible for physisorption) will have an output space that is
largely dominated by only one dimension; physisorption will
dominate any interactions involving samples with simple
surfaces (e.g., metal oxide electrical sensors) or polymer coatings
(e.g., coated quartz crystal microbalances, conductive polymer
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fibers). The physical interactions responsible for adsorption
onto surfaces or absorption into polymers are roughly equivalent
to what is commonly referred to as “hydrophobicity”.

Consequently, physisorption-based sensors, the basis of
traditional electronic nose technology, are almost always
dominated by a single dimension in a statistical sense.'*>”**
The sensor may indeed be constructed as an array—that is, they
can be constructed from many rows and columns containing
different metal oxides or polymer composites—but the resulting
output space is highly covariant, and that results in a low overall
dimensionality. In general, in such arrays, there is a single
dominant dimension that describes the vast majority (>90%) of
both the raw output space and discriminatory ability: most often
this dimension is essentially hydrophobicity. As a consequence
of this low dimensionality, most electronic nose technology is
not able to distinguish among libraries of similar complex
mixtures: targets with similar hydrophobic characteristics appear
similar to each other. In addition, for any technology that relies
on physisorption, interference from variation in humidity is
inevitable, given the very strong tendency of water vapor to
adsorb on surfaces.

At a first naive glance, these low-dimensional sensors do have
some advantages in analysis. Because of the high amount of
covariance between sensors, analysis can be significantly
simplified and some techniques become significantly more
accurate (e.g., linear discriminant analysis, vide infra). Addi-
tionally, because of the low changes in enthalpy involved in
physisorption/desorption, these sensors show improved rever-
sibility over the higher-dimensional sensors mentioned,
especially over short periods of time; this is a double-edged
sword, however, as this enhanced reversibility leads to a
commensurately decreased sensitivity simply by virtue of the
equilibrium behavior of weaker interactions.

Sensors based on chemical reactivity, as mentioned, have an
intrinsically high-dimensional output space. This higher
dimensionality implies a greater ability to differentiate among
similar targets: i.e., an enhanced discriminatory power. Similarly,
the compatible analyte scope is larger as the likelihood of
overlapping sensor responses in multiple dimensions is
decreased (i.e., the multidimensional hypervolume over which
analytes are distributed is much larger) relative to a
physisorption-based sensor. As the enthalpic changes in
chemical interactions are higher, sensors based on chemical
reactivity are likewise less reversible than physisorption-based
sensors; this can be overcome by making the sensor arrays
disposable, which then provides general improvements in
sensitivity, discriminatory power, and analyte scope.

A high-dimensional output space demands a more complex
approach to analysis than that which chemists are typically
accustomed to.**® One problem inherent with high-dimensional
sensors is that the potential output volume increases much more
rapidly than the available data; these data sets are usually
formally “sparse” (compared to the traditionally understood
“dense” data sets) and must be treated as such in order to obtain
meaningful information. Traditional analysis methods that are
effective for analyzing highly covariant, dense data sets tend to
fail (often spectacularly) when one attempts to apply them to
sparse data sets; these sparse data sets run headlong into the so-
called “curse of dimensionality” which can create significant
difficulties in all aspects of analysis, including function
approximation (i.e., regression), model fitting, parameter
extraction, and numerical computation.**”
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Analysis techniques for sensors all share the same common
goals: evaluation of the quality or character of the data set,
predicting information about unknown samples based on a
known library, and displaying output data effectively in order to
communicate with users. Methods that emphasize one of these
goals tend to have a trade-off with regard to the others: a sensor
array with S0 useful output dimensions that is optimized for
multiclass identification, for example, will be exceedingly
difficult to present in a traditional two- or three-dimensional
plot, even after dimensional reduction techniques; on the other
hand, a sensor with only two useful output dimensions is
straightforward to explain or present, but has commensurately
less discriminatory power. Keeping this in mind, we will discuss
several of the most common approaches to high-dimensional
data: hierarchical cluster analysis (HCA), principal component
analysis (PCA), linear discriminant analysis (LDA), support
vector machines (SVMs), and artificial neural networks
(ANNS).

In general, traditional analysis for high-dimensional chemo-
metric data can be divided into two distinct families: clustering
and classification.”**™*** Clustering methods seek to describe a
data set into groups of related targets (i.e., clusters); clusters are
defined by determining how the individual measurements are
related to one another by use of some sort of optimized distance
metric (e.g., nearest neighbor, within-cluster variance mini-
mization). Classification methods, on the other hand, attempt to
predict information about an unknown sample based on
previously acquired data. Each method is generally optimized
for a specific task and is not well-suited for other tasks; a typical
clustering technique, for example, may provide useful
information about the relationships among samples, but would
not be at all useful for classification. Techniques can usually be
shoehorned into providing additional utility (for example,
adding predictive algorithms to said clustering technique), but
one must be mindful that these approaches are not fully
optimized for the new task.

Analytical methods can be either supervised, in which case the
evaluation algorithm incorporates information regarding known
individual samples and is forced (i.e., biased) to treat them
accordingly, or unsupervised (also called “model-free”), where all
cases are evaluated identically without external informa-
387349 Since unsupervised models are ignorant of any
prior information, they generally follow simple, straightforward
algorithms and are used primarily for descriptive analysis; these
methods are used to provide quantitative information about the
data set which may not otherwise be readily apparent (e.g.,
similarity between samples, sample clustering/grouping).
Unsupervised methods are also commonly used to discover
features (e.g, class labels) that are later used in supervised
methods. Supervised models, on the other hand, incorporate
known external information (typically sample labels and
concentrations) and can be used to predict extremely useful
information related to these extra parameters (e.g., classification
and regression). This potential increase in utility comes at a
significant cost, however: models can be very complex, and data
sets require larger numbers of samples in order to adequately
incorporate the known external parameters. Supervised methods
are almost always augmented with unsupervised methods in
order to improve or evaluate the accuracy and generalizability of
predictive results (e.g, as in bootstrap resampling, cross-
validation, etc.).

tion.
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4.1. Descriptive Methods

4.1.1. Hierarchical Cluster Analysis (HCA). HCA is a
clustering technique in which groups of points (clusters) in a
multidimensional space are created in a discrete number of steps
and connected using some sort of distance metric (Euclidean
distance, Mahalanobis distance, etc.). HCA can be treated using
either a divisive “top-down” approach (i.e., successively dividing
larger clusters) or an agglomerative “bottom-up” approach
(successively merging smaller clusters); the agglomerative
approach is significantly more common. At each step in the
agglomerative process, typically two existing clusters (for the
first step, data points) are merged to form a new cluster by using
a linkage criterion (e.g., mean, centroid, minimum variance);
this is repeated until only a single cluster remains. The most
common linkage criterion is Ward’s minimum variance method,
in which the total within-cluster variance is minimized at each
step. An example is shown in Figure 26.7*%%

Figure 26. Schematic representation of a hierarchical cluster analysis
(HCA) of multidimensional data (left) that forms a dendrogram based
on clustering of experimental measurements (right). Reproduced with
permission from ref 62. Copyright 2013 Royal Society of Chemistry.

The resulting tree-like dendrogram displays connectivity
between parent and child clusters and has one quantitatively
important axis that shows the cumulative error score—
effectively the quantification of dissimilarity—based on the
chosen distance metric. In the context of chemical analysis,
connectivity displays relative similarity (i.e., which samples are
similar to each other) and distance displays the magnitude of this
similarity.

HCA dendrograms provide a straightforward method of
displaying cluster similarity semiquantitatively and can
effectively communicate the relationships between similar
chemical species. A representative example containing 100
VOCs is shown as Figure 27: similar chemical classes tend to
cluster together (i.e., have low dissimilarity distances) owing to
the nature of the chemical reactivity of the particular chemical
Sensor array.

There are three primary limitations in using HCA. First, as
with all unsupervised methods, HCA is not easily capable of
predictive analysis—it is a descriptive technique. Second, HCA
dendrograms must be completely recreated whenever a new data
point is added to a data set. This not only increases
computational burden for assessment of data sets that are in
the process of being collected, but also limits the ability to
compare between dendrograms (even those with similar data
sets); comparisons are typically limited to qualitative statements
(e.g., “which cluster does this new sample appear to fit into?”)
and not a quantitative evaluation (e.g., “what is the probability
that this new sample is that known analyte?”). Third, HCA
dendrograms can be easily misinterpreted due to the nature of
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Figure 27. Dendrogram from HCA of the colorimetric array responses to 100 common organic compounds at full vapor pressure at 300 K.

Reproduced from ref 169. Copyright 2006 American Chemical Society.

Figure 28. Effect of cluster orientation in dendrograms showing two classes of data, red and blue with one mis-clustering shown as a red square. These
two dendrograms are mathematically identical and represent exactly the same data: the y-axis is not quantitative. At first glance, however, the data point
represented by the red square appears much further out of place in the dendrogram on the left compared to the dendrogram on the right. Reproduced
with permission from ref 62. Copyright 2013 Royal Society of Chemistry.

having only a single quantitatively meaningful display axis
(distance). For a given cluster created from parent clusters A and
B, the exact orientation between A and B (i.e., whether A is
situated above B) does not matter: HCA dendrogram
connectivity is invariant toward rotation about the cluster.
The human eye, however, may be misled due to an apparent
proximity along the connectivity axis: noisy data can be easily
misinterpreted as appearing too similar or too dissimilar,
depending on the arbitrary orientation of the dendrogram. An
example is shown in Figure 28.

4.1.2. Principal Component Analysis (PCA). PCA is an
unsupervised descriptive technique that creates a new
orthogonal set of dimensions using linear combinations of the
initial dimensions. The first dimension (also known as a
direction, component, coordinate, etc.) is determined by finding
the vector that gives the maximum variance when the (centered)
data set is projected onto that vector; each subsequent
dimension is orthogonal to all previous dimensions and
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L . . . . 1,338,339,341
maintains this same condition of maximum variance. %"

This procedure is straightforward and readily available in
commercial software packages (which greatly contributes to its
popularity): one simply needs to perform an eigenvalue
decomposition on the covariance matrix of the data set, for
which there are several methods that are outside the scope of this
review (worth noting, however, is that it is rarely necessary or
desirable to calculate the actual covariance matrix, which is
prohibitive for high-dimensional data).

PCA thus describes a data set by showing how the data in the
set varies: a dimension associated with a large variance means
that samples vary significantly across this dimension, while a
dimension associated with a small variance means that samples
are mostly near the mean value. The magnitude of the variance is
also relevant, as typically a number of dimensions are kept that
add up to a proportion of the total variance across all dimensions
(usually 95%).
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Since PCA functions as a descriptive dimensional reduction
technique, plots of PCA scores (i.e., projection of the data onto
the new PCA dimensional space) are often easier to visualize
than raw data. This is only strictly true, however, when the
resulting PCA space has a low dimensionality (i.e., the
dimensions in the sensor data are highly correlated with each
other). PCA is widely used in visualizing electronic nose data,
and it is easy to see why—as mentioned above, electronic noses
often require only two or three principal components to fully
describe the variance even when they use a much larger number
of physical sensors. For low-dimensional data, PCA provides a
straightforward method of describing the variability in a sample
set, i.e, how similar samples are to each other.

When dealing with a wide range of analyte classes, a sensor
array with a large total chemical reactivity space (i.e., an array
that could potentially output high-dimensionality data) is
generally desirable in order to take advantage of the array’s
specificity and decrease the likelihood of overlap due, for
example, to changes in concentration or addition of new
analytes. As such, PCA is substantially less useful for visualizing
high-dimensional data compared to low-dimensional data:
humans are limited to visualization in only two or three
dimensions, and the first few PCA dimensions from high-
dimensional sensors will not be fully descriptive.

In the absence of noise, the theoretical maximum dimension-
ality of the generated PCA space is the lesser of either the
number of sample classes or the size of the chemical reactivity
space. When using a narrow class of analytes or using a sensor
array with a small total chemical reactivity space, then apparent
high dimensionality of a sensor’s output is indicative of a large
contribution of noise—essentially, a low signal-to-noise ratio
(S/N).

As a consequence of the correlation between sensors and the
influence of noise, the dimensionality of output data—the size of
the PCA dimensional space—is not determined directly by the
number of sensors in an array. As an example, Lin and Suslick***
designed a colorimetric sensor array containing 16 redox-
sensitive sensors to target a specific class of reactivity, focused on
discrimination between several peroxide-based oxidants and
peroxy-based explosives of varying concentrations. The array
probes only a small chemical reactivity space, and the PCA score
plot reveals that only two dimensions (not 16) were required to
describe 95% of the total variance, as shown in Figure 29.

Since principal components are combinations of responses of
array components, the magnitude of the variance described by
each principal component gives some information about the
contribution of each chemical property toward the overall sensor
response. In an array that probes only pH, for example, a single
dimension may describe more than 95% of the total variance.
Similarly, an array that probes pH, hydrophobicity, dipole
moments, film permeability, and nucleophilicity would be
expected to have a significant variance contribution from at least
five dimensions when using a diverse sample set. This variance-
per-dimension breakdown is often described using a scree plot
showing cumulative variance, as in Figure 30.

As with HCA, PCA is an unsupervised descriptive technique:
it is best suited for evaluation of data sets rather than prediction.
Unlike HCA, however, PCA generates its own dimensional
space that can be used to make rudimentary predictions: one
simply needs to project the unknown sensor response onto the
PCA dimensional space and determine whether or not the new
data point lies in close proximity to data from the training set.
Successfully classifying data using this method, however, relies
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Figure 29. PCA score plot showing two-dimensional separation of
multiple classes of redox-active analytes generated from triacetone
triperoxide vapor (TATP, concentration-only labels) and other redox-
active analytes. Circled areas represent 95% confidence intervals. Note
that only two dimensions were required to reach 94.9% total variance,
implying a small chemical reactivity space probing only two chemical
properties within the sample set. This particular sensor array used
several one- and two-electron redox-sensitive dyes encapsulated in a
xerogel matrix, and was designed with no other reactivity in mind.
Reproduced from ref 242. Copyright 2010 American Chemical Society.

on one major (and usually invalid) assumption: that the
variation within a sample class is significantly lower than the
variation between sample classes in the PCA dimensional space.

PCA dimensions are generated by total variance among all
samples (and completely unrelated to sample class labels), and
the magnitude of variance is completely unrelated to discrimination
ability; further, PCA usually discards dimensions corresponding
to low explained variance (and even if one keeps them, they are
often mathematically unstable). This lack of optimization for the
purposes of discrimination means that one may qualitatively use
PCA plots to explain when sample classes are “obviously
separable”; when sample classes are obviously separable on a
PCA plot, then better-optimized classification techniques (vide
infra) are likely to have high classification accuracy. The inverse is
not true: samples may appear inseparable on a PCA plot but still
have high classification accuracy using a technique that is better
optimized for discrimination. A descriptive example of this is
shown in Figure 31.

4.2. Classification Methods

Classification methods involve development of algorithms that
can identify (i.e., classify) an unknown sample using some
mathematical construct created using established data (known
as a library or training set). Classifiers are typically of the form of
“one vs one” or “one vs the rest” and used in some sort of voting
paradigm for the ultimate decision. In chemical sensors, linear
classifiers are by far the most common; these classifiers
determine planar decision boundaries (i.e., hyperplanes) to
effectively divide the aforementioned pairs. Mathematically, this
is equivalent to projecting the data point onto the normal vector
for the hyperplane and determining whether or not the
magnitude exceeds a particular threshold. Classifiers are
necessarily supervised methods, as the identities of the training
data must be known.

Linear classifiers are especially suitable for chemical sensors,
as chemical sensor output is generally normally distributed
about a multivariate sample mean. As such, linear decision
boundaries are actually the theoretically optimal solution for
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Figure 30. (a) Scree plot of data from a 36-element colorimetric sensor
array tested with 100 VOCs, showing relatively high dimensionality: 20
dimensions were required to describe 95% of the total variance. (b)
Scree plot from a 16-element colorimetric sensor array tested with 14
natural and artificial sweeteners, showing low dimensionality: two
dimensions were required to describe 95% of the total variance. It can
be inferred that the chemical reactivity space being probed by the sensor
array used in (a) is large and includes many classes of reactivity, while
that of the sensor array used in (b) is small where pH is the primary
component. Reproduced from ref 169. Copyright 2006 American
Chemical Society. Reproduced with permission from ref 342.
Copyright 2009 American Chemical Society.

discriminating among any particular pair of analytes. Further,
forcing this a priori known linear separability on any sort of

classification model reduces the potential of overfitting that
could occur using a nonlinear decision surface and allows for
linear methods that can only generate linear decision boundaries
(such as LDA, vide infra).

HCA and PCA, mentioned above, are unsupervised
descriptive methods that can be used to obtain useful
information about a data set. Because they are unsupervised,
they provide no direct method for classification and require
some sort of additional processing methodology in order to
obtain a classifier; one may develop rudimentary decision
boundaries on a particularly well-separated set of PCA outputs,
for example. As described, however, descriptive methods are not
optimized for discrimination ability: HCA clusters based on
some sort of method designed to fit a specific mathematical form
(nearest neighbor, centroid, variance minimization, etc.) and
PCA dimensions are based on total variance along a particular
vector. Rather than use these nonoptimized methods to develop
classifiers using their respective outputs, there are several
common methods that have been specifically developed to
maximize discrimination ability either using a hypothesis and
analytical methods (e.g., linear discriminant analysis) or
empirically (e.g., support vector machines or artificial neural
networks).

4.2.1. Linear Discriminant Analysis (LDA). LDA shares
some similarities with PCA: both construct a set of orthogonal
dimensions consisting of linear combinations of the original
dimensional space, and both methods reduce dimensionality by
keeping a number of dimensions meeting a threshold criterion.
LDA uses a different method for determining these linear
combinations, however: dimensions are selected so as to
maximize the ratio of between-class variance to within-class
variance, roughly analogous to maximizing their signal-to-noise
ratio for discrimination ability.

The methodology for classification using LDA is essentially
the same as for PCA: construction of a decision threshold that
best separates the two classes along some particular vector.
Unlike for PCA, however, the LDA output space is optimized
such that the vector connecting two class-means provides the
highest possible separability (i.e., the ratio of between-class to
within-class variance) between those two classes and determines
the normal vector for the decision boundary plane; the threshold

Figure 31. PCA score plot showing red and blue classes and three unknown experimental points A, B, and C. Circled areas represent confidence
intervals. By using a data set with large separation (left), it can be inferred that green circle A belongs to the blue class and gray circle B does not belong
to either blue or red classes. Using a data set with poor separation (right), orange circle C cannot be unambiguously identified despite appearing to be
closer to the other members of the red class, with the dashed line representing an obvious (by eye) separation between the two classes. Reproduced

with permission from ref 62. Copyright 2013 Royal Society of Chemistry.
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Figure 32. Score plots comparing data analyzed with PCA (left) and LDA (right). Circled areas represent confidence intervals. The most obvious
separation by eye in the PCA plot is along dimension A, which is orthogonal to dimension B; these dimensions correspond to the discriminant
dimensions in the LDA plot. Orange circle C is clearly identified as belonging to the red class using LDA, while identification is ambiguous using PCA.
In order to create a classification method, a decision threshold would need to be constructed using the two sample means. Reproduced with permission

from ref 62. Copyright 2013 Royal Society of Chemistry.

value is typically chosen to be halfway between the projections of
the two class means. Due to this optimization, compared to
PCA, LDA will show better ability to differentiate among sample
classes; a general example of this improvement is shown as
Figure 32.

The primary weakness of LDA is a requirement for a large
number of samples in order to construct the classifier. All
discriminant methods (including LDA) require a large sample
size, and in fact LDA was deliberately created in order to reduce
the number of requisite sample replicates compared to other
discriminant methods. Of the methods presented in this review,
discriminant methods are unique in that they require the
calculation of class covariances; accurate prediction requires that
the prediction matrix—the inverse of the empirically deter-
mined sample covariance matrix—is both accurate and solvable.
To avoid division by zero, solving the prediction matrix requires,
at a bare minimum, M independent measurements for an M-
dimensional sensor response (i.e., the covariance matrix must be
full rank); obtaining an accurate prediction matrix, on the other
hand, may require a sample size 100 times larger (or more).
Because of this inversion, the prediction matrix is unstable when
the number of samples acquired is not substantially larger than
the dimensionality of the sensor; this is obviously a major
problem for high-dimensional sensors which require a propor-
tionally higher sample size.**’

To address this problem, LDA uses a prediction matrix that is
defined by the average of all the class covariances, commonly
referred to as a “pooled covariance”; thus, instead of requiring M
replicates for each class, an M-dimensional sensor only requires
M replicates in total. Even using this rather clever trick, LDA still
suffers from instability and can suffer from drastically fluctuating
results with low sample populations; this phenomenon is better
known as overfitting, and results from the prediction method
being overly influenced by the presence of noise in the sample
set instead of a predictive property. In order to be accurate, the
true covariance matrix for each sample class must also be
identical—this is referred to as the homoscedasticity (also
spelled homoskedasticity) assumption. Since the noise in a
chemical sensor response is typically proportional to the
response, the homoscedasticity assumption becomes increas-
ingly less accurate as the number of independent dimensions in
the sample set and sensor array increases; this subsequently
results in increasingly poorer prediction accuracy as the total
dimensionality increases.
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There are two primary advantages to LDA. First, as with PCA,
LDA is extremely well-suited for analysis of low-dimensional
data (i.e., only probing one to three physical parameters, usually
dominated by a parameter such as hydrophobicity): in these
data sets, the homoscedasticity assumption is mostly accurate
and the number of sample replicates easily exceeds the number
of selected independent dimensions (i.e., usually two or three).
Second—and most importantly—usage of LDA is easily
defensible: the maximization criteria used to select the construct
the discriminant dimensions, as well as the mathematical
methodology used to implement those criteria, are well-known
and analytically solvable. LDA uses no optimized parameters
and has no model choices to justify; the only arbitrary choice in
the methodology involves selection of the decision threshold, as
mentioned above. A representative example of a two-component
LDA plot is shown as Figure 33, showing obvious separation
among a low-dimensional sample set (i.e., 98.3% total variance is
described by two dimensions).

Figure 33. LDA score plot showing separation among five serum
proteins at 25 nM concentration. Fluorescent displacement sensing was
used with multiple solutions doped with five GFP—NP sensors for the
five proteins at pH 7.4. Circled areas represent 95% confidence
intervals. Reproduced with permission from ref 343. Copyright 2009
Nature.
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Tensor discriminant analysis (TDA)***™**" is a technique

related to LDA for improved dimensional reduction with high-
dimensional data sets using tensors to better describe the known
physicality of the sensors (as examples: the independence of
temporal behavior from sensor response or the tendency of RGB
values for a single colorimetric sensor to correlate). TDA is used
to classify multiway array measurements (i.e., tensor measure-
ments) rather than traditional vector measurements. For the
sake of further discussion, it should be clarified that the term
“way” is, in common mathematical and computer science
terminology, referred to as a “dimension” but obviously cannot
be used in that sense here. A vector is a one-way tensor (with size
referred to here as its dimensionality); a matrix is a two-way
tensor (i.e., a vector ofvectors), and so on.

Data collected using sensor arrays is, when taken in total,
approximated well by a three-way tensor: the first way
corresponds to the choice of the probe, the second way
corresponds to any multidimensional responses for a particular
probe (e.g, for an optical sensor array, changes in red, green or
blue values, ie, AR, AG, AB, or some other spectral
decomposition), and the third way corresponds to the time-
course progression of that sensor (i.e., kinetic responses). The
general strategy for tensor discriminant analysis is to expand the
LDA methodology using expanded tensors rather than vectors,
which notably allows for the inclusion of temporal data. This
methodology can improve the sensitivity and specificity of these
methods, but most importantly allows for the reduction in the
computational (and statistical) burden for high-dimensional and
temporally resolved sensors. For example, a 36-element
colorimetric sensor array with 100 time-resolved points would
be treated as an essentially unresolvable 36 X 3 X 100 = 10 800-
dimensional sensor array using LDA, while TDA treats this as a
sensor array with 36 + 3 + 100 = 139 dimensions; the removed
dimensions would mostly account for noise or nonlinearities
that are inadequately handled by the model (e.g, nonlinear
saturation kinetics).

4.2.2. Support Vector Machines (SVMs). SVM is an
optimization-based discrimination technique that seeks to find a
decision boundary that best separates two classes in a linear
fashion. This is similar to LDA classification in some respects,
though the two methods differ greatly in approach. The
fundamental premise of SVM is based upon the idea that points
far from the decision boundary are easily classified; when a point
is far from the decision boundary, small variations in the position
of that boundary will not affect the identification. As such, the
decision boundary is constructed by analyzing the points most
likely to be misclassified: points near a candidate decision
boundary are weighted more when considering the position of
the boundary. These potentially contentious points (whose
position is defined by a multidimensional vector) are called
“support vectors”.

Optimization of the decision boundary is based on iterative
minimization of a structural risk function (i.e., defined by a set of
structural equations rather than similarity to an empirical
target). The core goal is to maximize the “margin”, i.., the
distance between the support vectors and the decision
boundary, with additional penalties for offside/misclassification
errors. A general explanation of the process is shown in Figure
34.

SVM optimization is well-developed for discrimination within
multidimensional data sets, and has been widely applied in
computer vision applications, notably in rapid face and eye
detection. User-defined parameters can be adjusted in order to

254

Figure 34. Graphical illustration of SVM classifier optimization. A
simplified initial guess is performed (left) and then algorithmically
optimized through multiple iterations to maximize discrimination by
attempting to maximize the size of the margin and minimize the
magnitude of offside errors (right). The margin is defined as the sum
distance from weighted contentious points (i.e., the support vectors,
indicated by green errors) to the decision boundary. Reproduced from

ref 32. Copyright 2016 Royal Society of Chemistry.

best suit the form of the input data; these include, e.g, factors
affecting the convergence of the gradient descent algorithm and
relative weighting for offside/misclassification errors (especially
important if one expects class data to partially overlap). The
SVM optimization algorithm with generally accepted default
parameters has been built into many modern statistical packages
including LIBSVM, an open-source SVM library.***

While sometimes associated with artificial neural networks
(ANNS, see section 4.2.3), SVM is distinct for several reasons
and is not properly categorized as an ANN: (1) it uses structural
risk minimization instead of empirical risk minimization, which
defines a global minimum rather than potentially converging
into one of many local minima; (2) because the output is rigidly
defined as a linear decision hyperplane, SVM is highly resistant
to overfitting (a problem which plagues ANNs); and (3)
computational complexity for SVM scales linearly with
dimensionality (in contrast, ANN complexity scales quadrati-
cally or exponentially with dimensionality).

Because SVM is an optimization-based method rather than an
analytical method (e.g,, it does not attempt to invert a covariance
matrix or perform eigendecomposition), it is compatible with
arbitrary nonlinear algorithms (i.e., kernels) that transform the
input into a linear form. These kernels are ubiquitous, and this
“kernel trick” is generally considered to be a core part of SVM.
The most common kernel used in sensors (other than
application of no transformation at all, i.e., a linear kernel) is
the radial bias function, which is essentially a form of a Gaussian
confidence test in which the decision boundary simply
represents the Euclidean distance from the mean of the class;
this would be used, for example, if one were trying to classify
unknown data using a “one against the rest” strategy in which the
class data is normally distributed, but the collection of “the rest”
is not. On the other hand, if data is expected to be pairwise
linearly separable (i.e., data lies on one side of a linear surface or
the other, but not both), then it is more common to use a “one
against one” strategy with a linear kernel (i.e, no trans-
formation); this is the case in most chemical sensors, as data
points for a class are usually normally distributed about a mean
sensor response.

The “one against one” strategy applied to N classes in a total
set generates N*[N — 1] total classifiers, and provides
unambiguous discrimination between any two well-defined
classes within the set (i.e., analyte A vs analyte B). The “one
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against the rest” strategy, on the other hand, generates N total
classifiers and provides discrimination between any chosen class
(say analyte A) and “the rest” (i.e., the difference set of the total
minus class A); as such, a kernel such as the radial bias function
must be applied to account for the multimodal distribution of
the set difference. Both paradigms are commonly used: the “one
against one” paradigm is faster in high-dimensional sensors with
small numbers of classes (due to the lack of a nonlinear kernel)
and is significantly more accurate when discriminating between
two closely related species, while the “one against the rest”
paradigm is more amenable to large numbers of classes and can
more easily be adapted to account for poorly defined interfering
species that do not necessarily have a defined class-mean.

The classifier for each pair of classes is given by a vector and a
decision threshold scalar, exactly analogous to the classifiers in
LDA or PCA. Evaluation of a classifier simply involves
projecting the unknown sensor response onto the classifier
vector (ie., the inner or dot product) and comparing to the
threshold value.

SVM has several major advantages over LDA and other
discriminant methods, and in fact addresses the two most
crippling challenges: SVM is both highly stable and does not
require large sample populations. SVM does not use covariance
information, which means that the “curse of dimensionality”
largely does not apply—there is no expectation regarding
response similarities (e.g,, homoscedasticity, as in LDA) and
sparse data sets (i.e, where many of the dimensions are
completely uncorrelated) have no effect on the prediction
accuracy whatsoever. Because it is an iterative optimization,
SVM can function with extremely small sample populations—in
fact, only one point per class is strictly required (though
obviously not likely to be accurate). The high stability of SVM
derives from the nature of the margin optimization: because only
the contentious points (i.e, the points near the decision
boundary) are important, variability in the vast majority of
points is largely ignored.

For all these advantages, SVM suffers from one major
weakness: it is an optimization method, not an analytical
solution. It is not possible to apply a mathematical formula and
obtain a “best” set of classifiers—though carefully chosen, kernel
choice and optimization parameters are arbitrary and must be
justified appropriately, similarly to the choice of a linear classifier
above. SVM optimization is a mature, highly active research area
and has reached an impressive level of sophistication; techniques
are incorporated into many statistics and statistical program-
ming packages and implementation is typically straightfor-
ward 3258348

4.2.3. Artificial Neural Networks (ANNSs). Artificial neural
networks (ANNs) are a special class of general-usage algorithms
that can be developed and used for nearly any data-driven
application, including descriptive analysis and feature discovery;
ANNss are included here under classification techniques due to
their ability to address unique nonlinear classification challenges
in chemical sensing.’*’ A particularly well-explained example
can be found in the application of convolutional neural networks
toward gaseous analytes by Peng et al.”*" There is a wealth of
ongoing research addressing the intricacies of building and
training ANNs; more thorough discussions are available on the
fundamental theory and exploration of architecture in
ANNSs, 3517355

Most analytical methods for sensor data (e.g, PCA, LDA,
SVM) are inherently linear methods: PCA and LDA, for
example, rely on linear correlations between dimensions, while
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LDA and SVM rely on linear separability (i.e., the notion that
sample classes can be effectively divided by a carefully chosen
hyperplane). When data has a nonlinear correlation between
dimensions, the standard approach is to use what is known as the
“kernel trick”—a known nonlinear function that transforms the
data into a linearly separable form. As mentioned in section
4.2.2, by far the most frequent kernel in use is the radial bias
function (i.e., distance from center or Euclidean distance) which
is commonly used in classifiers taking advantage of “one vs the
rest” voting paradigms; when used in this way, the radial bias
function is roughly equivalent to a probability estimate using a
Gaussian distribution. In general cases, however, the kernel is
usually unknown or is poorly chosen, leaving residual nonlinear
behavior in the data that can degrade the performance of a
classification method or make a regression method unreliable,
which can generate spurious dimensionality derived from linear
approximations of nonlinear data. When nonlinear behavior is
expected, ANNs can be a particularly powerful tool for analysis.

ANNSs can be thought of as an extension to numerical
multivariate regression techniques, and they use many of the
same mathematical principles. In general, networks are built
from multiple layers, with each layer mapping data from its input
space to its output space (i.e., the input space for the next layer)
using linear combinations of its input data (i.e., multiplying by its
weight tensor) and application of a kernel transformation known
as an activation function. A general schematic is shown in Figure

3S.

Figure 35. General schematic of ANN architecture. (left) A single
neuron j is denoted within the dashed blue lines. Output is determined
by computing the dot product of the input tensor (a;-a,) with the
neuron’s weight tensor (W,-W,) and passing the resultant value
through the activation function f(x); a biasing term independent of
inputs (denoted as b) is also often included (this effectively acts as an x-
intercept). (right) Example of a simple four-layer, fully connected feed-
forward neural network (also known as a multilayer perceptron); layers
are shown as rows, neurons are shown horizontally, and connections are
denoted by black lines. The raw input data (a;-a,) is treated as a
separate input layer with one neuron per input dimension that does not
have weights or activation functions. The inputs for each succeeding
neuron layer are from neurons in the previous layer; in this example, the
succeeding layer is connected fully to every neuron in the previous layer.
The number of neurons and types of activation functions chosen for the
output layer determine the dimensionality and format of the output
data.

Weight tensors are almost always randomly initialized (note
that there are carefully developed methods for directing this
randomization), and the network is subsequently trained by
providing a training data set consisting of known inputs and
target outputs; in this way, the network converges to a set of
weights that minimizes some sort of cost function (also known
as loss, or occasionally error functions) and best solves the input-
to-output transformation. This is known as empirical risk
minimization, which is in contrast to structural risk minimization
(as in SVMs). Networks are usually trained using a gradient
descent algorithm; when combined with randomized weight
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initialization, this methodology is commonly referred to as
stochastic gradient descent (SGD). Another common training
technique worth mentioning is a “genetic algorithm” that uses
methodology similar to biological natural selection. While the
discussion of the relative strengths and weaknesses of each
training method is outside the scope of this review, it should be
noted that SGD is by far the most commonly used.

The primary strength of ANNs lies in their flexibility—
networks can be easily designed to output classification results
(i.e., discrete-domain label prediction) or regression results (i.e.,
continuous-domain label prediction) as well as to learn
multiclass and nonlinear structures of input data. The type of
output, for example, can be altered by changing the activation
functions in the final (output) layer; regression usually involves
use of a linear activation function (i.e, a simple linear
combination), while classification involves use of a probability-
related function (such as the sigmoid function). In general,
activation functions are picked due to their relative similarity to
the desired output: e.g, bounded functions for probability
estimates, unbounded functions for regression, discrete
functions for binning, etc. Each function also has its own
strengths and weaknesses including, e.g., computational
complexity, training speed, stability, and saturation behavior.
Four of the most common activation functions are shown in
Figure 36: Sigmoid, Tanh (hyperbolic tangent), ReLU (rectified
linear unit), and Softplus.

An idealized binary classification algorithm would make use of
the Heaviside step function (i.e, a simple two-valued on/off
function) that would answer the question of “class A vs not class
A”. This function cannot be used in SGD, however, because its
gradient is either zero or undefined over its entire domain (and
thus the network would be untrainable). A smooth, differ-
entiable approximation of the Heaviside step function is the
sigmoid function, (1 + exp(—x))~", and is similarly useful in
binary classification when combined with a nontrained thresh-
olding method (representing a probability confidence thresh-
old). Integrating the Heaviside step function leads to the ReLU
function, while integrating the sigmoid function leads to the
Softplus function. These last three functions are suitable for
SGD, and are among the most commonly used functions in
ANNs. The tanh function is another approximation of the
Heaviside step function and is generally considered an
improvement over the sigmoid function; it is numerically
related and has the same computational complexity, but its
gradient has a narrower shape, leading to faster network
convergence as neurons approach the local minimum.

Regression and multiclass analysis are of particular interest in
sensor development, as the most commonly used methods for
analyzing sensor data are specialized for descriptive analysis
(e.g, PCA) or are specialized for pairwise classification (e.g,
LDA, SVM). While pairwise classifiers can be extended into
multiclass classification using a voting paradigm (i.e, “one
against one” with N? classifiers, or “one against the rest” with N
classifiers), ANNs can be designed to handle similar tasks
natively without this additional step using specialized method-
ology (e.g, using dimensional pooling and the softmax
activation function) and can also potentially output additional
useful information that is not as straightforward to obtain using
other techniques (e.g., correlation, confidence).

Regression analysis presents a potential major advantage of
ANNs over traditional analysis techniques, as while analyte
classes are often linearly separable (owing to Gaussian noise
processes inherent in instrument methods), signal responses are
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Figure 36. Outputs of common activation functions (blue lines) used in
ANNs and their gradients (red dashed lines). The shape of the
activation function determines the general shape (e.g.,, smoothness) of
the final combined output. Bounded functions (a) and (b) are related to
common probability distributions and are commonly used in
classification; unbounded functions (c) and (d) as well as the linear
activation function (ie., f(x) = x, not shown) are commonly used for
regression. All of these functions are generally used for intermediate
(hidden) layers; choice is largely empirical.

almost never linearly related to chemical input (e.g.,
concentration) over the entire relevant range of the input
values. ANNs can learn these nonlinear response behaviors
using a combination of activation functions; in contrast,
methods such as PCA, LDA, SVM, etc. each treat regression
as a linear problem. Even with an appropriate kernel, linear
methods which prove highly reliable for classification may be
unsuitable for regression due, for example, to the manner in
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which the methods handle noise coming from the instrument
compared to the variability in chemical input.

This flexibility, however, is also the primary weakness of
ANNG; a carelessly designed (i.e., “overengineered”) or poorly
trained network can easily learn and predict undesired or
nonexistent nonlinear behaviors. This “overfitting” behavior
usually manifests as large fluctuations in output upon small
fluctuations in input data, and is even more pronounced than in
discriminant methods such as LDA. The most straightforward
(i.e., naive) solution to correcting this behavior is simply to use
an extremely large number of training samples to best fit the
overall system; this is usually not feasible, however, within the
experimental scope of normal research laboratory procedures.
Opverfitting behavior can often be corrected through clever
network design or training paradigms; common methods, for
example, involve generating artificial training data or generating
additional neural redundancy through addition and selective
application of known noise sources. As with all classification
methods, segregation of the training and evaluation sets is also
vitally important to ensure that one does not underestimate the
magnitude of overfitting.

In contrast, all but the simplest ANN are inherently nonlinear
and do not follow a rigid transformation pattern except that
defined by the limits within the network. In many ways, ANNs
have the opposite problems of the simpler linear methods
mentioned above: enforcing approximately linear separability on
all but the simplest ANNs can be challenging. As such, ANNs
have the biggest advantage over other methods when the
relationships between dimensions and samples are known (or
strongly suspected) to be nonlinear, and the relationship is
unknown or difficult to solve analytically. In all cases, ANNs
should be carefully designed and trained to avoid overfitting as
well as thoroughly evaluated with an independent evaluation set
to provide an accurate estimation of their generalizability.

5. APPLICATIONS OF COLORIMETRIC AND
FLUOROMETRIC SENSOR ARRAYS

5.1. Applications to Single Analytes

5.1.1. Volatile Organic Compounds. The colorimetric
sensor array, as first developed by Rakow, Suslick, and co-
workers, employed an array of different metalloporphyrins
exclusively for the visual identification of different families of
volatile organic chemicals (VOCs).'*” Coordination of
analytes to metalloporphyrins induced strong color changes,
and the pattern of color changes was used for analyte
recognition. The sensor array was able to respond to broad
classes of organic compounds such as alcohols, amines, ethers,
aldehydes, ketones, thioethers, phosphines, phosphites, thiols,
arenes, and halocarbons, often with sensitivities at sub parts per
million level and without response to changes in ambient
humidity. Using a variety of metalloporphyrins with a wide range
of properties including chemical hardness, ligand-binding
affinities, and solvatochromic effects allowed for precise
discrimination among a wide range of VOCs.

By broadening the types of sensors in the colorimetric array to
include shape-selective bis-pocketed porphyrins, pH indicators,
and solvatochromic dyes to a total of 24 sensors, Rakow et al.'”*
were able to selectively discriminate among structurally related
aliphatic or aromatic amines with sub parts per million
sensitivities. The sensor array was able to fully discriminate
among C3—CS8 linear or cyclic alkyl amines, notably including
isomeric amines. A similar array was designed by Citterio and
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co-workers®>® based on a polarity-based method that enabled
sensitive detection of seven primary amines with different alkyl
chain lengths, with high discrimination ability of the sensor array
down to amine concentrations of 50 ppmv.

With further expansion of the array to 6 X 6 colorimetric
sensors with several new classes of dye sensors, Suslick and co-
workers were able to demonstrate error-free discrimination
among 100 different VOCs with common organic functional
groups including primary, secondary, tertiary, and aromatic
substituents of amines, arenes, alcohols, thiols, aldehydes,
ketones, carboxylic acids, esters, hydrocarbons, halocarbons,
and phosphines. The array was able to discriminate among
VOCs by probing a wide range of intermolecular interactions
between analytes and sensor elements, including Lewis acid—
base, Bronsted acid—base, metal ion coordination, hydrogen
bonding, and dipolar interactions. Figure 37 presents a selection

Figure 37. Colorimetric array response to VOCs visualized as color
difference maps. Shown are 24 representative VOCs after equilibration
at their vapor pressure at 295 K. Reproduced from ref 169. Copyright
2006 American Chemical Society.

of the difference maps of a representative subset of 15 VOCs,
including carboxylic acids, aliphatic amines, and aromatic
amines. Limits of detection (LODs) are analyte dependent
and were not determined in this specific study, but were
generally in the low parts per billion volume range for amines,
carboxylic acids, thiols, and phosphines. The sensitivity of the
array to bases and acids results from the strong metal—analyte or
dye—analyte interactions, either by metal ligation (i.e.,
coordination or dative bonding) or by Bronsted acid—base
interactions. Weakly coordinating vapors such as esters, ketones,
alcohols, arenes, and hydrocarbons give a lower response, which
one also sees with the mammalian olfactory system. It is
noteworthy that, with the proper choice of dyes and substrate,
the array is essentially insensitive to changes in humidity.
While these colorimetric sensor arrays work exceedingly well
for reactive organic volatiles, they do not show particularly
strong responses to less reactive vapors. For example, common
indoor air pollutants (e.g, alcohols, aromatic hydrocarbons,
chlorocarbons, and some organic solvents) are generally not
reactive and are not detectable at low vapor levels, which require
an effective method for analyte pretreatment to enhance their
sensitivity. Lin, Jang, and Suslick® invented a dramatic
improvement in the sensitivity of colorimetric sensor arrays
for the detection and identification of less-reactive VOCs by the
use of a disposable preoxidation technique in which the analyte
stream was passed through a strong oxidant (e.g,, chromic acid
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Figure 38. Colorimetric identification of less-reactive VOCs using preoxidation. (a) Schematic illustration of the preoxidation technique. A Teflon
tube is packed with chromic acid on silica to pretreat the gas flow before it is passed over the colorimetric sensor array. (b) Color difference maps
showing colorimetric array responses to 12 representative VOCs after preoxidation. Reproduced from ref 60. Copyright 2011 American Chemical

Society.

Table 1. LODs of 20 VOC Pollutants Commonly Found in Indoor Air with or without Preoxidation (Reproduced from Ref 60.

Copyright 2011 American Chemical Society.)

voc LOD, preox (ppm)
acetone 1100
benzene 5000
camphene 140
chloroform 290
p-dichlorobenzene 100
ethanol 130
ethyl acetate 760
ethylbenzene 350
formaldehyde S0
D-limonene 100
methyl ethyl ketone 1400
phenol 0.50
isopropanol 260
styrene 100
toluene 300
1,1,1-trichloroethane 8000
1,2,4-trimethylbenzene 300
m-xylene 500
o-xylene 500
p-xylene 550

LOD,ig1 preox (PPm) LOD,g preox/ LODyith preox

16 69
0.20 10000
1.1 130
0.60 480
1.6 63
0.50 260
7.4 100
13 270
0.10 500
0.90 110
22 640
0.60 0.80

18 14
0.50 200
13 230
S.0 1600
0.60 500
0.50 1000
0.60 830
0.60 920

loaded on silica) before reaching the array (Figure 38).
Preoxidation converts VOCs to chemically reactive species
such as aldehydes, ketones, carboxylic acids, and quinones which
have a stronger interaction with relevant colorimetric sensor
elements. This results in an average of ~300 times enhancement
of sensitivity with a concomitant increase in discriminatory
capability (Table 1).

Remarkably, since the colorimetric sensor array is based on
analyte-array chemical reactivity, chemical class information
becomes readily available from the data analysis."” Figure 37
shows the familial similarities of the color difference maps of
alkyl amines vs aromatic amines vs carboxylic acids, simply by
recognizable color patterns. The more detailed analysis afforded
by HCA provides quantitative information on how well that
chemical class is discriminated against one another (Figure 27).
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Part of the reason for this successful discrimination among very
large numbers of VOCs is the high dimensionality of the data
obtained from this colorimetric sensor array. The PCA of the
database representing the 100 VOCs shows an extraordinarily
high level of dimensional dispersion by the colorimetric sensor
array: 14 dimensions are needed to account for 90% of the total
variance, 22 dimensions for 95% of the total variance, and 40
dimensions for 99% (Figure 30a).

In an attempt to improve the discriminatory power of the
sensor array among volatile carbonyls (e.g., aldehydes, ketones,
and esters), Li et al.**’ have recently designed specific amine-
containing indicators stabilized by a polymeric plasticizer for
selective differentiation of aliphatic or aromatic aldehydes and
ketones at parts per million and sub parts per million vapor levels
(Figure 39). The newly designed colorimetric sensor array for
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Figure 39. Colorimetric sensor response to aldehydes and ketones. (a) Before exposure, 2 min after exposure, and color difference profile of the array
for a typical measurement on 10 ppm formaldehyde. (b) Color difference profiles of seven aldehydes and eight ketones at 25 ppm (left panel) and 0.5
ppm (right panel) after 2 min exposure. Reproduced with permission from ref 243. Copyright 2017 Wiley.

Figure 40. Color difference maps of 20 representative TICs at their IDLH. Reproduced with permission from ref 174. Copyright 2010 Royal Society of

Chemistry.

formaldehyde or ketone detection discards commonly used
chemoresponsive dyes”” for a wide variety of VOCs and only
retains carbonyl-responsive indicators, and therefore becomes
more chemically specific for the recognition of formaldehydes
and ketones. This method relies on nucleophilic addition to
carbonyl functionalities of analytes by amino indicators in the
formation of imines, which gives a substantial change in the
visible spectrum and hence a large change in color. Motivated by
classic qualitative spot tests including Brady’s or Schiff test,'**
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aniline and phenylhydrazine compounds were selected as the
sensor components and optimized with the addition of different
types and amounts of nonvolatile acids. The sensor array allows
for the discrimination of aliphatic or aromatic aldehydes and
ketones within 2 min, with high accuracy of classification >99%
according to HCA, PCA, and SVM analysis. LODs of several
representative ketones or aldehydes were calculated to range
from 40 to 800 ppb, which are all below 10% of their respective
PELs (permissible exposure limits) and substantially better than
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other optical, acoustic, or electrochemical methods in which
LODs are generally observed to be at parts per million levels.

5.1.2. Toxic Industrial Chemicals. Toxic industrial
chemicals (TICs) are chemically reactive species whose
toxicities derive from a wide variety of specific chemical
reactions with multiple biochemical systems in cells and
organisms. Some acute toxins target specific and critical
metabolic enzymes (e.g,, HCN inhibits cytochrome ¢ oxidase
while phosgene inhibits pulmonary function); some cause cell
lysis in the lungs creating pulmonary edema (e.g., HCI, HF);
other potent oxidants or reductants (e.g., O;, phosphine) target
various relevant biosystems. There remains an urgent need for
rapid, sensitive identification and quantification of TICs,**® yet
we have no miniaturized, inexpensive, and effective technology
for personal dosimetry of TICs in the chemical workplace or in
cases of emergencies such as industrial fires or chemical spills.
The chemical workplace has no equivalent to a radiation badge
for personal monitoring of exposure to TICs and to provide
warning at IDLH (immediately dangerous to life or health) or
PEL (permissible exposure limit) concentrations.

There are numerous conventional methods for the detection
of gas phase hazardous chemicals, including gas chromatog-
raphy/mass spectrometry (GC/MS), ion mobility spectrometry
(IMS), electronic noses or tongues, and of course colorimetric
detectors tailored to specific single analytes. Most such detection
techniques, however, suffer from severe limitations: GC/MS is
expensive and generally nonportable; IMS has limited chemical
selectivity; electronic nose technologies have restricted
selectivity and specificity (due to their heavy reliance on weak
interactions). Moreover, interference from large environmental
changes in humidity or temperature remains highly problematic.

Colorimetric sensor arrays, however, are exceptionally well
designed to incorporate a diverse set of chemically responsive
indicators for the detection, identification, and quantification of
TICs.””"7*'7> Suslick and co-workers developed the use of
nanoporous sol—gel or plasticized pigments”” >*'"*'7 as the
chemoresponsive elements in a series of extremely sensitive
colorimetric sensor arrays. They selected high hazard TICs from
the reports of the NATO International Task Force 40*°” and
examined the ability of their array to discriminate among 20
TICs (Figure 40); LODs for TICs are generally well below the
PEL (in most cases below 5% of PEL) and all are below 100 ppb
with the exception of formaldehyde, which has been
subsequently resolved using a specific aldehyde-sensitive array
that can detect as low as 40 ppb formaldehyde (Figure 39).

The sensor array was able to accurately discriminate among
those 20 TICs at both their IDLH concentrations within 2 min
of exposure and PEL concentrations within 5 min of exposure;
HCA showed no errors in misclustering and jackknifed LDA
gave an error rate below 0.7% out of 147 trials (Figure 41). The
colorimetric sensor array was not sensitive to changes in
humidity or temperature over a substantial range. The sensor
array has shown excellent stability and reproducibility that the
response is independent of the fluctuation in relative humidity
and the presence of various common gaseous or liquid
interferents.

While LODs are defined absolutely with respect to S/N, that
term only defines at which concentration one can determine that
a certain analyte is present. Limits of recognition (LORs) are
much more useful to define the sensor’s discriminatory
capability, but they are also library dependent (i.e., relying on
the choice of analyte types). Figure 42 demonstrates the limit of
recognition for a subset of five TICs (i.e., HCN, NH;, PH;, SO,,
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Figure 41. HCA dendrogram for 20 TICs at IDLH concentrations and
a control. All experiments were performed in septuplicate; no
confusions or errors in clustering were observed in 147 trials.
Reproduced from ref 175. Copyright 2010 American Chemical Society.

and NO,) is well below 5% of their PEL, which may become of
special interest for epidemiological studies. Consistent with the
array’s capability of discriminating among many possible TICs
over a series of parts per million or sub parts per million
concentrations below their PELs, PCA and LDA confirmed the
high dimensionality of the data achieved by the colorimetric
sensor array that reguires 17 PCA dimensions to capture 95% of
the total variance.'”

Other studies of interest in the design of more specialized
optical arrays for specific detection of TICs have been actively
reported. For example, Hoang et al.**’ developed a dye-
impregnated nanofiber sensor array for accurate quantification
of gaseous ammonia between 0 and 100 ppm. The sensor’s
detection sensitivity could be easily regulated using different
amounts of acidic additives or types of pH indicators. Bang et
al."** synthesized organosilica microspheres incorporating pH
indicators as nanoporous pigments used in an array to
differentiate different aliphatic amines; the array also success-
fully discriminated a series of vapor concentrations of ammonia,
with a reported LOD of 100 ppb (<0.2% of its PEL). Sen et al.*®'
developed a disposable colorimetric sensor array which can
detect hydrogen sulfide concentrations in the range of 50 ppb—
S0 ppm at ambient temperature. Sen and co-workers*** also
expanded their work to a more generalized sensor array for
ammonia, hydrogen chloride, chlorine, and sulfur dioxide. The
array is able to rapidly measure IDLH concentrations of SO,
(100 ppm) with a response time within half minutes.

As to applications of fluorometric sensor arrays in gaseous
TIC detection, a typical example is from Koo et al,,””* who
reported multiple DNA—polyfluorophores as sensor elements
for successful identification of eight toxic gases including SO,,
H,S, MeSH, NH,, NHMe,, HC], Cl,, and BF;. A set of 15
responding sequences attached with different fluorescent
aromatic hydrocarbons or heterocycles was synthesized and
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Figure 42. Limits of recognition for the identification of TICs. (left)
Effect of concentration on array response to NH;, SO,, and HCN.
(right) HCA of a subset of five TICs demonstrates a limit of recognition
well below 5% of the PEL. Reproduced with permission from ref 174.
Copyright 2010 Royal Society of Chemistry.

cross-screened under a microscope against toxic gases. In the
imaging analysis, responses were measured according to changes
in fluorescence wavelength and intensity, which were quantified
as AR, AG, AB, and AL (changes in red, green, blue, and overall
luminosity) values analyzed from sensor bead images. The
polyfluorophore sequences (in Table 2, sequences S3, S7, and
S11) were found to give the most quantitative color response
plots and were therefore selected for statistical analysis. HCA
and PCA based on the subset of those three chemosensors both
show clear separation of all gas analytes.

5.1.3. Aqueous Analytes. To make it possible for the
sensor array to respond to the volatile vapors of solutes, a
colorimetric sensor array (CSA) can be prepared on a
hydrophobic membrane with the dye formulations encapsulated
in hydrophobic matrices, so as to reduce the blooming of sensor
spots and dissolution of dye molecules upon immersion into an
aqueous solution. Zhang et al.”* designed a simple colorimetric
sensor array that enables the detection of different organic
compounds at very low concentrations ( <1 ﬂM) in water.
Unique color difference profiles over a wide range of dissolved
organic compounds can be readily differentiated by the naked
eye.

Monitoring toxic metal ions in water has also been
accomplished using a nanoporous pigment array. Feng et al***
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reported a CSA for identification of trace heavy metal ions
(including Hg**, Pb**, Cd**, Zn**, Ag*", Cu®", Ni*', and Co*") at
wastewater-discharge standard concentrations. Five pyridylazo-
based metal chelating probes were immobilized in a phosphate
plasticizer and organized into an array via a filtration method.
Discrimination of heavy metal ions was performed without
interference of Na*, K', Ca*, and Mg®" ions. The lowest
concentration needed for discrimination of eight heavy-metal
ions was determined to be 50 M. Sener et al.**> demonstrated a
facile colorimetric array using 11l-mercaptoundecanoic acid
capped gold nanoparticles (AuNPs) and amino acids (Lys, Cys,
His, Tyr, and Arg) for the simultaneous identification of
common heavy metal ions including Hg**, Cd**, Fe**, Pb**, AI*",
Cu?", and Cr’* with the LOR as low as 20 uM (Figure 43). The
array gave high responsiveness to Pb*" and Fe** with LODs of 2
and 10 uM, respectively. The AuNP-based colorimetric array
showed excellent reproducibility that all tested metal ions in
three parallel experiments could be discriminated with no errors.

Recently, Park, Lim, and co-workers have integrated
colorimetric sensor arrays with paper-based microfluidics for
effective sensing of aqueous anlaytes.’®® This has substantial
implication for sensor formulations that are inherently hydro-
philic and otherwise prone to blooming if printed on an
unconfined substrate (e.g., cellulous paper or polymer
membrane). Flower-shaped microfluidic sensor arrays were
photolithographically patterned using photocurable monomers,
and successfully applied to the aqueous detection and
discrimination of eight antioxidants including flavonoids,
phenolic acids, and polyphenols in the millimolar range. Four
tea products that are abundant in those antioxidants were tested
and successfully identified. The microfluidic sensor array can
also potentially be applied to the screening of other food and
beverages, water pollutants, and biomolecules.

Detection of pesticides in aqueous phase and in real samples
has also been accomplished using colorimetric array technolo-
gies. A 1 X S colorimetric sensor array comprising five probes
sensitive to H,0, or thiocholine was reported by Lin et al;**’
the selectivity of the array is based on the inhibition of different
pesticides on acetylcholinesterase (AChE) that produces
different amounts of H,0, or thiocholine. Five organo-
phosphates and five carbamates were distinguished at low
investigated concentration (1077 g/L) from other classes of
pesticides, herbicides, and controls (Figure 44). The sensor
array allowed for the prediction of the presence of pesticide
residues in apple juice or green tea products, and the test was not
influenced by potential interfering agents in the food such as
Na', K', sucrose, glucose, vitamin C, etc.

Fluorescent displacement assays have been extensively
employed for identification of amino acids in solution. It was
reported that f-cyclodextrin derivatives bearing a metal-binding
site and a dansyl fluorophore were combined with pendant -
amino acids and used for selective identification of natural amino
acids in aqueous buffer (Figure 45).>°® This method offers
effective enantioselective fluorescence probes for the discrim-
ination of enantiomers of the amino acids (e.g, valine and
proline). In this work, the authors developed a fast protocol
based on fluorescence quenching by using the Cu(Il)/amino
acid complexes in a fluorescence microplate reader, which
allowed for the detection of samples with high enantiomeric
excess. Larkey et al.*” reported a double-strand displacement
biosensor for the detection of miRNA. The sensor was able to
bind to the target miRNA, while the self-complementary
reporter was displaced and folded into a hairpin structure,
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Table 2. Cross-Screening Results of DNA—Polyfluorophore Sequences and Their Blended Difference Images Showing the
Responses to 1000 ppm of Each Toxic Gas As Shown by Microscopy (Reproduced with Permission from Ref 363. Copyright 2011

Royal Society of Chemistry.)

causing a decrease in fluorescent signal. Recognition of miRNA
occurred within 10 min and required no additional hybrid-
ization, labeling, or rinsing steps, with LODs at several
nanomolar. As a potential application in medical diagnosis,
selective detection of a cancer regulating microRNA, Lethal-7,
was achieved by this reporter-probe biosensor.

Fluorometric displacement assays based on intramolecular
indicators have been used for identification of metal ions.
Minami et al.>*” developed an intramolecular indicator displace-
ment assay (IIDA) that utilizes a receptor and a spacer with an
attached anionic chromophore in a molecular assembly, for the
discrimination of different anions and particularly for
phosphates, including phosphate (Pi), pyrophosphate (PPi),
AMP, ADP, ATP, and the environmentally important
compound glyphosate. Two sensors were designed and
introduced into a microtiter array for the detection of phosphate
anions: sensor 1 features thiourea and amide groups as anion
recognition moieties that induce characteristic blue fluores-
cence, while two naphthalimide moieties were included to
generate bright fluorescence in the case of sensor 2. The assay
was used for both anions in the presence of excess NaCl as an
interferent. Based on the fluorescence signal obtained after 1
min, excellent qualitative and quantitative recognition results
were achieved using only two IIDA sensors. LDA gave accurate
classification of all 11 anions and a control (Figure 46); sensitive
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detection of phosphate with sub parts per million LODs (e.g.,
0.2 ppm for glyphosate) was obtained for most of the 11 anions.

Nanoparticles (NPs) present in the environment are a new
type of potential aqueous contaminant due to the increasing
prevalence of nanomaterials and nanomaterial-enabled tech-
nologies. Currently, few studies have been carried out on the
detection of trace levels of NPs; there is a pressing need for
sensors that can provide rapid, sensitive, and highly portable
detection and identification of NPs at nanomolar or even
subnanomolar range. Ideally, such sensors should also be able to
unambiguously discriminate among NPs with different sizes,
shapes, core materials, and surface chemistries, especially since
their physicochemical properties (e.g., chemical, optical,
electrical, magnetic, and surface corona) have substantial
impacts on their potential toxicity. Mahmoudi et al.*”
demonstrated a simple colorimetric array that was able to
detect various AuNPs with different shapes (nanospheres or
nanorods) and a wide range of sizes (2—40 nm in diameter of
nanospheres, 2.4 and 3.5 aspect ratios of nanorods) in aqueous
solutions. The sensor array consists of five cross-reactive dye
indicators, whose visible absorbances change in response to their
interactions with NPs. Although no single dye is specific for any
AuNP, the color difference patterns provided by all five dyes
display unique molecular fingerprints for each specific NP
studied (Figure 47). Based on the digital data obtained from
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Figure 43. Colorimetric response of the colorimetric array against
Hg**, Cd**, and Fe** at 20 uM and their binary and ternary mixtures.
(a) Representative photograph. (b) HCA dendrogram. Reproduced
from ref 365. Copyright 2014 American Chemical Society.

Figure 44. HCA for organophosphates, carbamates, organochlorines,
pyrethroids, herbicides, and a control. No confusions or errors in
classification for organophosphates and carbamates were observed in
68 trials. The organophosphates and carbamates were tested at 1077 g/
L; all other pesticides were at 10~* g/L. Reproduced from ref 367.
Copyright 2015 American Chemical Society.

sensor responses of various dyes, a semiquantitative determi-
nation of concentration of each type of NP was successfully
accomplished, with an excellent detection limit below 100 ng
mL™". Standard chemometric methods were used to precisely
discriminate those chemically distinct NPs against each other,
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Figure 4S. Microplate reader output obtained by a cyclodextrin species
(6 X 107° M) upon addition of 10-fold excess of Cu(Val), complex of
different enantiomeric excesses. The fluorescence intensity was
encoded as a color. (a) Total output; (b) displayed data below a
lower threshold corresponding to 95% Dp-Val. Reproduced with
permission from ref 368. Copyright 2005 Royal Society of Chemistry.

Figure 46. Sensing images of various biological anions and their
classification results. (a) Digital images of a microarray chip with the
polymer-embedded IID sensors 1 (blue features) and 2 (yellow-green).
(b) Graphical output of the linear discriminant analysis showing
clusters of 11 anions and a control. Reproduced from ref 209. Copyright
2014 American Chemical Society.

and against multifunctional carbon nanospheres without errors
in 112 trials. This sensor array therefore may pave the way for a
reliable, rapid, and inexpensive approach to detect nano-
pollution and to characterize the physical or chemical properties
of NPs.

DOI: 10.1021/acs.chemrev.8b00226
Chem. Rev. 2019, 119, 231-292


http://dx.doi.org/10.1021/acs.chemrev.8b00226

Chemical Reviews

Figure 47. Color difference profiles of five sensor dyes after interaction with various NPs at different concentrations. For display purposes, difference
maps were generated by subtraction of the solution absorbance before exposure from that after exposure in response to various NPs, carbon
nanospheres, and precursor controls with three selected wavelengths (i.e., 480, 590, and 620 nm) assigned to RGB values; at each of these three
wavelengths, absorbances from 0 to 0.484 optical density were mapped linearly to 0—255 in RGB values. Reproduced from ref 370. Copyright 2016

American Chemical Society.

5.1.4. Explosives. As is obvious to anyone who often enters
an airport, explosives detection has received great attention over
the past decade. While attempts have been made over the years
to develop optical sensors that are sensitive enough for practical
use, optical methods have yet to measure up to mass spectral
approaches, most notably ion mobility spectroscopy; fluorescent
detection of nitro-based explosives is an exception, where the
electron-deficient nature of nitro groups provides unique
fluorescent quenching.’”'~*”* Nevertheless, examples of optical
array sensors for detection and discrimination among relatively
volatile peroxide-based explosives and among homemade
explosives whose volatiles signature (so-called explosive
bouquet®”*) have been reported in recent years. The majority
of attempts to optically distinguish nitro explosives (e.g.,
especially trinitrotoluene, TNT, and cyclotrimethylenetrinitr-
amine, RDX) primarily rely on the unique electronic properties
of nitro groups.””>™>’” Several of these studies, including
approaches to detect other explosives-related compounds and
other chemical or biological hazards (e.g, chemical warfare
agents, microbes), were discussed in detail by Diehl et al. and
Kangas et al. in their recent reviews.”?”® A more recent array-
based approach developed by Parkin and co-workers®”” used
multicolor quantum dots featuring several functional surface
ligands, which are quenched in the presence of electron-deficient
nitro compounds. The multichannel fluorescent array was able
to detect and differentiate five nitro explosives, including
dinitrotoluene (DNT), TNT, trinitrophenylmethylnitramine
(tetryl), RDX, and pentaerythritol tetranitrate (PETN) at their
low aqueous concentrations, with LOD < 0.2 ug mL™".

The peroxides, as one of the most powerful classes of
explosives, have emerged as a major explosive of choice used in
terrorist activities in recent decades. Peroxide-based explosives,
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including triacetone triperoxide (TATP) and hexamethylene
triperoxide diamine (HMTD), can be readily prepared by an
acid catalyzed reaction of acetone with hydrogen peroxide atlow
temperature.380 Owing to alack of UV absorbance, fluorescence,
and facile ionization, it is difficult to detect TATP or HMTD
from gaseous or liquid samples directly.”®" Techniques that are
able to detect peroxide-based explosives generally demand
expensive instrumentation, extensive sample preparation, or
time-consuming preconcentration of TATP vapor using solid-
phase microextraction. To solve these problems, Lin and
Suslick®*” reported a new method for detection and
quantification of TATP vapor using a colorimetric sensing
approach. The TATP vapor in the gas stream is decomposed by
a solid acid catalyst contained in the sensor spot (Amberlyst 15),
and the resulting H,O, vapor, being kinetically much more
reactive, immediately responds to redox indicators. TATP is
detectable even at very low concentrations down to 2 ppb (i.e.,
<0.02% of its saturation vapor pressure). The array could also
differentiate TATP from other chemical oxidants (e.g., hydro-
gen peroxide, bleach, fert-butylhydroperoxide, peracetic acid),
and the sensor response is independent of the presence of
common potential interferences (e.g., humidity, perfume,
personal hygiene products, laundry supplies, volatile organic
compounds).

Microfluidic paper-based analytical devices (uPADs) stand
for a class of easy-to-use sensing platforms particularly for liquid
analyte detection and have reached a wide popularity both in
academia and in industry. The large variety of relevant studies
used in optical sensing has been elaborately reviewed.”* ™%
Peters et al.**® demonstrated a (uPAD) for rapid and field
detection of both inorganic and organic explosives, including
NO;7, ClO,, RDX, H,0,, and urea nitrate. The microfluidic
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device was fabricated with wax to generate five hydrophobic
channels and prepared on chromatography paper for aqueous
sample detection. Each channel contains colorimetric agents
that are able to interact with one or more explosive components
leading to a specific color change.

In real-world applications, the identification of explosives
using a sensor array is primarily based on the recognition of
“chemical bouquets”, i.e., degradation products or impurities
that can be potentially fingerprinted. In order to identify such
complicated explosive mixtures, the chemical diversity of the
array becomes particularly critical. Askim et al.* reported a 40-
element sensor array capable of detecting and differentiating
among several explosives and related compounds, including a
range of amines, nitroaromatic compounds, peroxides, and
characteristic contaminants (e.g., cyclohexanone, a major
solvent used for RDX purification). The sensor array
incorporates a broad range of chemical sensors including
traditional pH indicators, redox probes, strong nucleophiles, and
a novel class of metal—dye chromogens that are sensitive to
nitroaromatics. A set of distinctive color difference patterns from
each explosive analyte is shown in Figure 48. Scree plots from

Figure 48. Color difference maps of the 40-element linearized
colorimetric sensor array with bar spots showing signal-to-noise ratios
of 16 explosives, related analytes, and the control. Reproduced with
permission from ref 32. Copyright 2016 Royal Society of Chemistry.

the PCA of results obtained by the array show a high
dimensionality in overall response probed by the sensor array;
it requires 16 dimensions to account for over 95% of the total
variance. As shown in Figure 49, HCA shows that the 16 analytes
were separable into 13 groups: two KClO;-containing mixtures
were grouped together, along with 2,3-dimethyl-2,3-dinitrobu-
tane (DMDNB), PETN, and RDX (weakly responding nitro-
based explosives). Interestingly, application of SVMs used with
cross-validation enables the separation of RDX from the group
of nitro compounds, and the resulting 14 out of 16 groups had
100% cross-validation accuracy.

In a follow-up study, Li et al.”" reported that this array was
capable of discriminating subtle differences among types of
TATP and HMTD prepared by different sources of acids or
oxidants, in large part due to the presence of impurities left over
from synthesis and degradation products during storage (Figure
50). The colorimetric array was integrated with a field-
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Figure 49. HCA dendrogram of normalized difference vectors for 16
explosives, related analytes, and the control: 112 trials in total. All
species were clearly differentiable except among members of two
groups: KCIO; mixtures (KClO;—sugar and KClO;—fuel oil) and
nitroalkyls/nitroamines (DMDNB, PETN, and RDX). Reproduced
with permission from ref 32. Copyright 2016 Royal Society of
Chemistry.

Figure 50. Scaled difference maps of the 40-element colorimetric
sensor array showing signal-to-noise ratios of nine TATPs and three
HMTDs and a control. TATP and HMTD were synthesized using
different peroxide and acid sources. Reproduced with permission from
ref 31. Copyright 2015 Royal Society of Chemistry.

deployable handheld reader for real-time analysis of different
variations of peroxy explosives, which can be clearly differ-
entiated against each other and against possible interferents
found at a typical airport security checkpoint.

Printing quality (e.g., the uniformity of color across an
individual sensor spot or from one array to another) of a sensor
array is a major factor in its sensitivity and accuracy. Even using
the difference maps of digital images before vs during exposure
cannot eliminate completel{/}r the variation created by non-
reproducibility in printing."®” Improvement in print quality is a
perennial challenge, and several methods have been attempted.
In one such example, Berliner et al. used photolithographic
patterning of a porous membrane to create well-defined polymer
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Figure 51. Hierarchical cluster analysis (HCA) for 20 separate automotive fuels and one control. Each analyte name represents quintuplicate trials after
1 min exposure at 1% saturated vapor pressure. No misclassifications or confusions were observed out of 105 total trials. Reproduced with permission
from ref 298. Copyright 2015 Royal Society of Chemistry.

Figure 52. Representative color difference maps showing quintuplicate analyses of multiple accelerants after preoxidation and a control. Reproduced
with permission from ref 298. Copyright 2015 Royal Society of Chemistry.

walls that improve the printability of arrays. The resulting array 5.1.5. Accelerants and Postcombustion Residues.
Automotive fuels and other petroleum products, including
gasoline, diesel, kerosene, and lubricants, comprise a class of
hazardous chemicals commonly used as accelerants in cases of

demonstrated highly selective detection of TNT vapor and other

nitroaromatic compounds for rapid detection even at parts per
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trillion levels. arson. Chemical sensor arrays have recently shown promising
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Figure 53. (a) Scheme of preoxidation of liquor vapors before exposure to the 36-element colorimetric sensor array. (b) Sensor array response to 14
liquor samples, four ethanol controls at relevant concentrations, and the control without preoxidation. Reproduced from ref 390. Copyright 2018

American Chemical Society.

applications in forensic identification of those accelerants for
both pre- and postcombustion samples; this also has
implications in other areas where one may want to identify
hydrocarbon samples, such as product analysis and studies of air
pollution.

Although colorimetric sensor arrays have traditionally
performed well in identifying reactive volatiles, they have low
sensitivity toward inert gases such as halocarbons and most
hydrocarbons. This is obviously a problem for an array designed
to work with precombustion accelerants; common accelerants
universally consist of a mixture of alkanes, alkenes, and aromatic
hydrocarbons. Suslick and co-workers addressed this problem
by employing a pretreatment technique in which the vaporized
hydrocarbons are first exposed to a strong oxidant in order to
produce more reactive oxidation products (i.e., aldehydes,
ketones, and carboxylic acids).”

This preoxidation technique was used to discriminate among
various types of petroleum products that could act as accelerants
both before and after their combustion. Samples included
multiple brands of gasoline, common lubricants, and common
fuels.””® The array was able to discriminate even among different
brands of gasoline, and further by octane rating. HCA of these
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data shows complete discrimination with no errors after 1 min of
exposure to analytes at 1% of the saturated vapor pressures
(Figure 51). Limit of recognition is also well below 1% of
saturated vapor pressure for the library consisting of 20 separate
automotive fuels plus the control.

Averaged color difference maps showing the sensor responses
to both burned and unburned hydrocarbon products are shown
in Figure 52. From these difference maps, it is evident that the
preoxidation technique significantly enhances the sensor
response and the uncombusted samples give more complicated
patterns of array response than burned materials, probably due
both to analyte evaporation (i.e., reduced analyte concentration
during combustion) and to the formation of gaseous
combustion products (i.e, CO, or CO) to which the sensor
array is weakly responsive. The somewhat strong responses
observed from some of the burned accelerants (i.e., burned BP
89 or Mobil 93) are attributed to the trace amounts of unburned
volatiles or other byproducts from incomplete combustion of

the accelerants.
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5.2. Applications to Complex Mixtures

For complex mixtures, chemists often assume that the ultimate
goal is a complete quantitative component-by-component
analysis. In truth, however, one seldom really wants to know
the many hundreds of compounds present in a complex mixture,
be it coffee, liquor, soil, bacteria, or exhaled breath. Instead,
useful goals are better fulfilled by a highly discriminant
fingerprinting of the entire mixture. Such a fingerprinting
permits comparison to standards (e.g., quality control/quality
assurance), identification of chemical class, origin, or
manufacturer, and correlation of the fingerprint to properties
measured by other, often less reproducible means (e.g.,, human
sensory evaluation panels, so-called organoleptic analysis). In
the cases where component-by-component analysis is required,
“hyphenation” is the usual approach,”® combining a separation
technique (e.g., various chromatographies or electrophoresis)
with an analysis technique. Sensor arrays are most commonly
used for fingerprinting of complex mixtures, although there has
been some preliminary exploration of their combination with
disposable gas chromatography microcolumns.**’

5.2.1. Foods and Beverages. The discrimination among
highly similar complex mixtures often remains problematic even
using the most sophisticated analytical techniques. A great
number of foods and beverages are known for their complexity
in chemical composition, and a component-by-component
analysis is generally impractical, given the thousands of different
compounds present in edible materials. On the other hand,
quality control or assurance of foods and beverages has become
increasingly imperative for regulation of the food industry, and
the ability to differentiate adulterated food or beverage samples
from the real ones is highly desirable. For these two reasons, the
sort of fingerprinting that sensor arrays are able to achieve can
prove extremely useful.

Li et al.™”* developed a 36-element colorimetric sensor array
composed of a wide range of chemoresponsive indicators for
quality control and assurance of alcoholic beverages. In
combination with an aforementioned reagent (ie., chromic
acid on alumina support) for the preoxidation of liquor vapors,
those alcoholic beverages become more responsive to the sensor
array due to the increased levels of aldehydes, acids, and other
oxidized products. This generalized sensor array is highly
responsive to key components in liquors including aldehydes/
ketones, carboxylic acids, polyphenols, sulfides, ethanol, and
various other VOCs. Color difference patterns based on 2 min
vapor exposure were unique to each of the 14 liquors or controls
at relevant ethanol concentrations, and could be readily
discriminated even by the naked eye (Figure 53). Sensor
responses to real liquor samples were far more complicated than
aqueous ethanol controls over a wide range of ethanol
concentrations, which demonstrated the high chemical com-
plexity of liquors and provided an effective approach to
distinguish real liquors from counterfeited ones.

Han et al.””' demonstrated a hypothesis-free (i.e., nonspecific
interactions involved), three-element array consisting of either
fluorescent polyelectrolytes or chimeric green fluorescent
proteins (GEPs) for the discrimination of over 30 kinds of
whiskies according to their country of origin, brand, blend status,
taste, and age. Those fluorescent sensor arrays were based on
differential quenching of the fluorescence by the complex
mixture of analytes extracted from the oak barrels, including
vanillin, vanillic acid, oak lactones, tannins, etc. The differential
binding of the analytes to polymers or proteins originated from
nonspecific interactions, such as hydrophobicity or electrostatic
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interactions. LDA showed accurate classification of (Figure 54).
These fluorescent probes proved equal or even superior to state-
of-the-art mass spectrometry in terms of the speed, resolution,
and discriminatory powder.

Figure 54. LDA plot of the fluorescence modulation data obtained with
an array of selected polyelectrolytes treated with all of the whiskies
investigated. The jackknifed classification matrix with cross-validation
reveals 99% accuracy. Reproduced with permission from ref 391.
Copyright 2017 Elsevier.

Jia-wei Li et al.””* used a colorimetric sensor array consisting
of four chemical reagents to analyze multiple Chinese liquors.
Based on PCA, HCA, and LDA using “leave-one-out” cross-
validation, the colorimetric sensor array was able to distinguish
four types of Chinese base liquors from a famous liquor brand,
“Luzhou Laojiao”, nine Chinese liquors with different flavor
types, and seven Chinese liquors from different geographical
origins.

Colorimetric sensors have also shown useful applications in
other common alcoholic drinks. Zhang et al.*’ reported an
earlier version of colorimetric sensor arrays that enabled the
differentiation among 18 brands of beer. Accurate results of
differentiation between ales and lagers were obtained, and even
among very similar beers the classification was still able to
achieve an accuracy rate of >97%. In addition, differentiation of
pristine beer from the effects of watering or decarbonation
proved possible. As another example in beer quality screening,
Rico-Yuste et al.’””® reported a disposable polymeric film for
quantification of furfural, as an indicator of beer freshness. The
designed colorimetric reaction between aniline-derived poly-
mers and furfural based on the Stenhouse reaction was
monitored using a portable fiber optic spectrophotometer or
the built-in camera of a smartphone. The sensor film allowed for
sensitive detection of furfural with a linear response range of 39—
500 ug L' and a detection limit of 12 ug L™", both of which were
superior to other available colorimetric or chromatographic
methods.

Coffee provides another prototype of highly multicomponent
systems of beverages. While there are about 300 volatile
compounds in unroasted and green coffee, over 1000 volatile
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Figure 55. HCA for 10 commercial coffees and a control, with all analytes run in quintuplicate. Adapted from ref 397. Copyright 2010 American

Chemical Society.

compounds have been identified for roasted coffee including
carboxylic acids, alcohols, aldehydes, alkanes, alkenes, aromatics,
esters, furans, ketones, lactones, oxazoles, phenols, pyridines,
thiazoles, and thioI)hences.394_396 Moreover, the roasting of
coffee beans is highly dynamic, and the processes that develop
the flavor and aroma of coffee are largely dependent on the time
and temperature. Suslick et al.””” made use of the same sensor
array developed for TIC identification for the measurement of
coffee aromas. The color changes of the sensor array were used
as a digital representation of the array response and analyzed
with standard statistical methods. In quintuplicate runs of 10
commercial coffees and controls, HCA gave tight clustering of all
analyte and control groups with no confusions or errors out of 55
trials (Figure 5S). PCA revealed that the sensor array has
extraordinarily high dimensionality with 25 dimensions to
account for >95% of the total variance. In addition, the effects of
time and temperature on the roasting of green coffee beans were
readily observed and distinguishable with a resolution of 5 min
and 10 °C, respectively.

The nutritional value of milk is primarily determined by its fat
amount, and a rapid and sensitive fat sensor is therefore in high
demand for the quality control of dairy products. Chang and co-
workers have developed a fluorometric microplate assay for
quantification of milk fat using bodipy-based sensors that rely on
disaggregation-induced fluorescence emission.’”® By monitor-
ing the fluorescence spectra of the microwell plate, the assay was
able to quantitatively measure the fat amount of different milk
samples and to classify them based on their fat content, thus
proving useful in a milk quality control process.

Monitoring the freshness of meat products, including pork,
beef, poultry, and fish, is a potential application of colorimetric
and fluorometric sensor arrays in food inspection. Chen et al.**”
constructed a paper-based colorimetric sensor array with cross-
reactive dyes encapsulated in resin microbeads. These dyes were
sensitive to volatile amines produced during spoilage of chicken.
A low-cost smartphone camera was used to obtain color
information on the sensor array pattern for quantitative estimate
of chicken aging and eventual spoilage under different
temperature conditions. Salinas et al.**’ reported an optoelec-
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tronic nose constructed from 16 pigments (pH indicators, Lewis
acids, hydrogen-bonding derivatives, selective probes, and
natural dyes) incorporated into porous silica or alumina for
identification of the age of chicken meat, again based only on
detection of biogenic amines. Li and Suslick most recently have
expanded the range of analytes used for meat spoilage
detection.’’* They made use of a disposable array combined
with a handheld device for on-site assessment and monitoring of
the freshness of five meat products: beef, chicken, fish, pork, and
shrimp. The sensor array showed excellent sensitivity to gaseous
analytes, especially amines and sulfides at low parts per billion
levels; excellent discrimination among meat volatiles in terms of
meat type and storage time was demonstrated with multiple
chemometric approaches including PCA, HCA (Figure 56), and
SVM analysis.

Detection and quantification of saccharides is of great
importance in real-time monitoring of food quality. Lim,
Musto, and Suslick®*****%* have developed colorimetric sensor
arrays for detection and quantification of saccharides and
artificial sweeteners using a 4 X 4 colorimetric sensor array. The
chemoresponsive colorants used were immobilized in hydro-
phobic nanoporous organosilanes as host matrices. Based on the
color difference patterns generated from the array, the sensor
was able to accurately determine 14 sugars and sweeteners at
millimolar concentrations in buffered solution (pH 7.4). The
concentrations of sugars and sweeteners could be determined
over at least a S-fold range, and glucose concentrations were
measurable over the full range of clinically significant levels for
blood sugar determinations.

Anslyn and co-workers have developed a general displace-
ment strategy using a series of serum albumins and three
fluorophores as sensing ensembles that can selectively respond
to a variety of nonpolar analytes, including fatty acids,””’
terpenes,””” plasticizers,"”* and glycerides.””> For their
applications in food chemistry, the resultant probe was able to
differentiate among four fatty acids (palmitic acid, oleic acid,
stearic acid, and linoleic acid) and among five edible oils
(sunflower oil, hazelnut oil, canola oil, extra virgin olive oil, and
peanut oil). PCA of the data library shows clear clustering
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Figure 56. Dendrogram showing hierarchical cluster analysis of the
spoilage of five meat products stored at 25 °C with 0, 24, 48, 72, and 96
h plus an ambient air control; 93 trials in triplicate replicates.
Reproduced with permission from ref 312. Copyright 2016 American
Chemical Society.

among all analyte species. It is noteworthy that the PCA is
heavily dominated by a single component (~90% of total
variance), and that dimension essentially represents the
hydrophobicity of the analytes (which is determined by carbon
chain length and degree of unsaturation of different fatty acids
involved).

In a similar concept, Anslyn and co-workers used the
definition of the indicator displacement assay (IDA) by
designing a set of peptide-based ternary sensing ensembles to
discriminate among polyphenol-based flavonoids and red wine
varietals.””> In the designed IDA, the probes were based on
replacement of a catechol dye from a cation center bound to the
peptide; the designed strategy (Figure S7) is quite straightfor-
ward and specific due to significant structural similarities
between the indicator dye and chosen analytes. The method
was also successfully employed for the prediction of the
composition of red wine blends”’” and differentiation of wood
extracts of Cachaga,””® the most popular alcoholic beverage in

Brazil, which is made from distilled and fermented sugarcane
juice. The discrimination pattern was accurate and reproducible
for Cachaga extracts of oaks obtained from different countries
and of Brazilian woods (as alternatives to oaks for aging
Cachaga) from different regions (Figure S8).

Colorimetric sensor arrays have successfully been applied in
wine discrimination. Using a diversified set of synthetic boronic
acid and guanidinium-functionalized receptors, the Anslyn
group designed a 3 X 3 array sensitive to organic acids in
wine.* The authors showed the ability of the array to
discriminate malate, tartrate, and citrate based on spectrophoto-
metric data at three wavelengths (the indicator maxima); using
this data, the array was able to discriminate accurately among six
different red wines. These more chemically diverse displacement
assays provide a much higher dimensionality of data (three
dimensions include 88% of the discriminatory power) as
demonstrated by the LDA, and a much improved distinction
between the wine varietals compared to their prior publica-
tion.**®

5.2.2. Proteins. Developing an economically accessible,
high-throughput sensing technique for identification of proteins
is of substantial importance in medical diagnostics, especially in
the area of proteomics. There have been several recent studies
reported on the use of ogtical sensor arrays for sensing individual
proteins in solution,”””**® some of which have been further
applied to the detection of real biological samples, including
bacteria and cancer cells.**”*'® One may hope that such arrays
might prove useful for detecting specific proteins in blood or
urine that could be associated with pathogen diagnosis or health
monitoring,

Li et al."” reported the applications of unmodified noble
metal nanoparticles in the detection of proteins. In this work,
five gold nanoparticles and two silver nanoparticles with
different sizes constructed the colorimetric sensor array, which
could selectively interact with proteins and show distinct color
change patterns. The array was able to discriminate 10 different
proteins at 0.5, 5, and 50 M each without errors based on LDA
results (Figure 59). Wang et al.*'" demonstrated a fluorescent
turn-on array consisting of several combinations of nano-
particles and CdSe quantum dots for sensitive detection of
proteins. The addition of proteins disrupted interactions
between nanoparticles and quantum dots, thus restoring distinct
fluorescence responses. A linear dynamic range of 2—50 yM was
obtained, and LODs were generally below 2 uM for all tested
proteins. Hou et al.""” tested an artificial tongue modeled closely
on Suslick’s work using a series of metalloporphyrins and
indicator dyes capable of rapid interaction with proteins. The
array produced distinct patterns in response to each protein
which permitted accurate identification of the pure and mixed
proteins as well as denatured proteins at 10 puM. Two-
dimensional PCA plots showed excellent discrimination

Figure 57. General scheme of a peptide-based ternary sensing ensemble for the discrimination of wine flavonoids. Differential sensing ability is
provided by several peptide sequences used with an indicator displacement strategy. Reproduced with permission from ref 405. Copyright 2011 Royal

Society of Chemistry.
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Figure 58. LDA score plot of UV—vis responses of the peptide-based ternary sensor array to Cachaga extracts of oaks and Brazilian woods (Amburana,
Balsamo, and Canela-Sassafras) in comparison to pure samples. The numbers for oak samples represent different countries of origin, while different
numbers associated with Brazilian woods represent different regions within each country. Reproduced from ref 278. Copyright 2017 American

Chemical Society.

Figure 59. Canonical score plot for the first three components (factors)
from LDA of simplified absorbance response patterns obtained with the
noble metal nanoparticle-based array against S M proteins.
Reproduced with permission from ref 409. Copyright 2015 Royal
Society of Chemistry.

among all tested proteins, especially given that only ~64% of the
total variance is captured for pure and mixed proteins and 82% of
total variance for natural and denatured protein clusters in a two-
dimensional plot. Remarkably, one is able to distinguish
thermally denatured proteins from the native form rather easily
using this approach.

Fluorometric sensor arrays using displacement or differential
assays also show significant capability in the differentiation of
proteins with complicated structures. Of special interest, the
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Rotello group has extensively worked on creating multiple
differential sensor arrays using engineered gold nanoparticles
with the goal of discriminating among a variety of biological
samples; this area of work has been both concisely”'>*'* and
exhaustively reviewed.*'*™*'° The analytes competitively bind
to gold nanoparticles with fluorophores, which adds additional
unique characteristics to the selectivity of sensor arrays, as
shown schematically in Figure 60. Different types of
fluorophores as capping agents have been used in their studies,
including synthesized polymers,”'’~*'? green fluorescent
proteins (GFPs),**” and enzymes**” that catalyze the generation
of new fluorophores.

In one of their representative publications, Rotello and co-
workers used a gold nanoparticle—fluorophore system made
from gold nanoparticles conjugated to green fluorescent protein
(GFP—NP) to act as the displaced indicator. Using a protein as
the displaced indicator is a straightforward method of
discriminating among peptide-based analytes due to the
molecular similarity between the incoming analyte and the
displaced probe. This method allowed for the discrimination
among several types of human serum proteins including
fibrinogen, HSA, a-antitrypsin, transferrin, and IgG (Figure
33),** which was then reported in a subsequent publication for
the detection of mammalian cells.”*'

In another work, Rotello and co-workers used a set of
functionalized Fe;O, nanoparticles to discriminate among
several proteins, which utilizes the interactions between proteins
and cationic Fe;O,4 nanoparticles that enable the modulation of
their peroxidase-like activity in response to H,0,.*"” This work
used only two probes for discrimination, which unavoidably
leads to low dimensionality. In practice, the variance of data is
dominated by a single dimension, as shown in Figure 61. The
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Figure 60. Schematic representation of competitive binding between
protein and quenched green fluorescent protein (GFP)—gold nano-
particle complexes and protein aggregation, which leads to restored
fluorescence or further quenching with distinct responses. Reproduced
with permission from ref 343. Copyright 2009 Nature.

Figure 61. LDA score plot showing discrimination among 10 separate
proteins using cationic Fe;O, nanoparticles. Note the complete
dominance by one dimension (factor 1). Reproduced with permission
from ref 417. Copyright 2012 Wiley.

authors state that surface charge, protein size, and surface
hydrophobicity all play roles in discrimination of these species;
they may all contribute in a composite sense to the principal
component, but the low dimensionality of the data means that
one is likely to encounter overlaps in clustering due to changes in
concentration or other factors, and the ability to discriminate
one cluster of analytes from another is heavily limited by the S/N
in the two dimensions (i.e., the width or length of the ellipsoids
marking out one cluster from another). The origin of the
specificity is not clear; proteins with very similar pI values are
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differentiated, and there is no correlation with protein size or
surface charge. More detailed data about surface hydrophobicity
may provide some further insight.

Anslyn and co-workers also reported a set of 30 aptamers for
fluorescent discrimination of protein variations of HIV-1 reverse
transcriptase with a few substitutions in amino acids (WT, M3,
MS, and M9, as shown in Table 3), based upon the differential

Table 3. Amino Acid Identity for Protein Variants of Wild-
Type (WT) or Drug-Resistant Variant (M3, MS, and M9) of
HIV-1 Reverse Transcriptase (Reproduced with Permission
from Ref 422. Copyright 2011 Wiley.)

no. WI M3 MS M9 no. WI M3 MS M9
41 M L M M 4 E D E E
67 D N N D 6 T D D T
70 K K R K 75 V.V VoI
77 F F F L 116 F F F Y
118V I % \% 1S Q Q Q M
18 MV V M 210 L w L L
215 T Y Y T 20 K K Q K

sensing protocols.””> The three-dimensional (3D) LDA plot
showed that clusters were separated in the vector space defined
by the three most important components (Figure 62). Leave-
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Figure 62. Normalized 3D LDA of 30 aptamers set for the
discrimination of four protein variants plus the negative controls;
98.3% of total variance captured. Reproduced with permission from ref
422. Copyright 2011 Wiley.

one-out cross-validation revealed that M9, WT, and the negative
controls could all be predicted with 100% accuracy, while an
overall accuracy of ~85% was obtained for MS and ~73% was
obtained for M3. This work proved the hypothesis that an array
of cross-reactive aptamers could act as an effective tool for
discriminating proteins that are structurally similar without the
efforts to create specific receptors for each variant.

5.2.3. Ratiometric Fluorometry for Intracellular Sens-
ing. In a sense, the incorporation of two or more fluorophores in
a single probe constitutes a special class of low-dimensionality
optical sensor arrays: ratiometric fluorescent probes with
multiple fluorophores (which display either dual-excitation or
dual-emission behaviors) can provide an array-like, self-
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Figure 63. Construction and nucleotide selectivity of a GTP sensor. (a) G protein domain of E. coli FeoB without ligand. (b) G protein domain of E.
coli FeoB protein with a bound GTP analogue (shown in red with the Mg®* ion). (c) Creation of the sensor by inserting cpYFP (yellow) at six different
positions within the switch I region (pink) of the FeoB G-protein domain (green), either with or without a Ser-Ala-Gly linker (purple) at the N-
terminal fusion point and either with or without a Gly-Thr linker (purple) at the C-terminal fusion point. (d) Ex405/Ex48S ratio for the designed
sensor in the absence or presence of nucleotides in the concentration range 4—500 M. Reproduced with permission from ref 427. Copyright 2017

Nature.

calibrated sensor response. Ratiometric fluorometry has been
extensively applied to the detection or quantitation of different
biochemical parameters in living cells, such as intracellular pH,
cations/anions, biomolecules, and cellular viabil-
ity, 207229423 —426

Phosphate is critical to cellular function and skeletal
mineralization, and the quantitative evaluation of biologically
relevant phosphate has drawn tremendous attention in recent
years. Bianchi-Smiraglia et al.**” reported a ratiometric sensor
for measuring cellular concentration of guanosine triphosphate
(GTP), which relates to a series of human diseases and, most
remarkably, cancers. Using genetically encoded circularly
permuted yellow fluorescent proteins (cpYFPs), the sensor
undergoes conformational change and exhibits a rapid,
internally normalized ratiometric signal in response to GTP at
different concentrations ranging from 4 to 500 xM, both in vitro
and in vivo (Figure 63). The sensor also enables detection of
intracellular distribution of GTP within individual cells, which
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raises the possibility for high-throughput screening of molecules
that modulate intracellular GTP levels.

Intracellular pH plays numerous key roles in cellular activities,
and therefore monitoring pH in vitro or in vivo is of great
importance for probing living cell functions.””***” Bao et al.**
employed five tunable ratiometric fluorescent pH nanosensors
that incorporate hyperbranched polymer nanoparticles with the
combination of two different aggregation-induced emission-
active fluorophores: a green emissive naphthalimide indicator as
the pH probe and a blue emissive naphthalimide indicator as the
reference (Figure 64). The resultant probes exhibit a wide range
of emission intensity ratio (Is;0/I450) values from 0.4 to 1.9 as pH
changes from 8.1 to 5.0, thus allowing for quantitative analysis of
intracellular pH values (Figure 65). These polymer ratiometric
nanosensors show great potential as an effective platform for
sensing intracellular pH, as validated by the pH measurement of
acidic organelles in HeLa cells. One may well imagine future
intracellular probes of this sort that will report on the

DOI: 10.1021/acs.chemrev.8b00226
Chem. Rev. 2019, 119, 231-292


http://dx.doi.org/10.1021/acs.chemrev.8b00226

Chemical Reviews

Figure 64. Construction of ratiometric pH nanosensors using
hyperbranched polylactide nanoparticles functionalized with naph-
thalimide-based fluorophores N2 (green) as the pH probe and N1
(blue) as the reference. For five different nanosensors P1—P5, the molar
ratios of N1 to N2 are 1:0, 3.3:1, 1:1, 1:2.5, and 0:1. Reproduced from
ref 430. Copyright 2015 American Chemical Society.

concentration of multiple critical molecular or ionic species
inside living cells.

Nanomaterial-based probes are also an actively pursued route
for addressing the ratiometric detection of intracellular pH or O,
concentrations.”" Pan et al.*** reported a series of fluorescent
nanoprobes that combine aminofluorescein and ethidium
bromide for subcellular pH ima§ing in cytoplasm, lysosomes,
and mitochondria. Huang et al.”*? addressed the construction of
AuNP-based nanoprobes integrated with single-stranded
oligonucleotides and a dual-fluorophore-labeled i-motif, which
generate high or low signal in fluorescence resonance energy
transfer (FRET) at acidic or neutral pH. Nareoja et al®*
demonstrated polyethylenimine-coated NaYF,:Yb*",Er** nano-
particles as the fluorescent molecular pH nanoprobe. All of these

nanosensors show excellent spatial and temporal resolution in
living cells or tissues, in part because as many as 20 000
nanosensors may be taken up by an individual cell.”

Intracellular temperature sensors are another interesting
application of ratiometric fluometric sensors. As changes in
the temperature of the cellular microenvironment can have a
significant impact on signaling pathways and their nanoparticle
uptakes,°~**® the development of novel temperature nanop-
robes could prove useful for intracellular imaging and
monitoring. Homma et al.** reported a ratiometric fluorescent
molecular probe that incorporates the thermally sensitive
thodamine B and a thermally insensitive NIR dye for the
selective visualization of the temperature elevation (34—41 °C)
in the mitochondria, which plays a key role in cellular activities
related to homeostasis and energy balance. Han et al.**
developed a diselenide ratiometric fluorescent probe based on a
selenium—sulfur exchange reaction for the qualitative and
quantitative detection of glutathione concentrations, which is
an important index of hypothermia or hyperthermia that reflects
the cell stressed states (Figure 66). The probe was successfully
used to image the glutathione levels of HepG2 in vivo.

Ratiometric fluorescence sensors were also employed to
detect oxygen levels in cytosol*’’ and for the detection of
hypoxia in tumor cells. Cui et al.**' designed a p-nitrobenzyl
probe that undergoes an evident blue to green fluorescent
emission change catalyzed by nitroreductase at low oxygen levels
(Figure 67). This probe was applied to in vitro imaging of
hypoxia for solid tumors from A549 cell line, which displayed no
cytotoxicity and interference. Similar probes were also
developed and employed in the recent work for the hypoxia
imaging of other cancer cells.***~***

5.2.4. Bacteria and Fungi. Effective methods for detection
and discrimination of bacteria are highly desirable in both
medicine and industy. Bacterial infections are widely involved in
food poisoning, hospital-acquired infections, and many other
areas that cause diseases and that are of Ggreat concern for the
health of the general population.”"*** In industry, many
products have to be screened to avoid possible bacterial
contamination before they may be released, and as a
consequence regulation of the food industry must be particularly
strict.*"”**® Challenges associated with the identification of
pathogenic bacteria include the necessity of long culturing times,
the need for highly trained laboratory personnel, the demand for

Figure 65. (a) Fluorescence emission spectra of P1—PS in buffer solutions of pH 7.0. (b) Visible emission of P1—P$ observed under UV lamp excited
at 365 nm. (c) SEM image of P2-based nanoparticles. (d) SEM image of P3-based nanoparticles. Reproduced from ref 430. Copyright 2015 American

Chemical Society.
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Figure 66. Pseudocolor ratio imaging showing the distribution of glutathione with addition of 10 mM probe in HepG2 and HL-7702 cells under
hypothermic (4 and 30 °C) and hyperthermic (42 and 44 °C) conditions for 30 min, with or without $ mM N-ethylmaleimide (NEM) treatment (to
consume all the glutathione). Reproduced with permission from ref 440. Copyright 2017 Royal Society of Chemistry.

Figure 67. Fluorescence microphotographs of A549 cells incubated with 10 M p-nitrobenzyl probe at 37 °C for 7 h. The top row was at aerobic
conditions (a—c). The bottom row was under hypoxic conditions (d—f). (a) and (d) were taken in optical windows between 540 and 580 nm. (b) and
(e) were phase contrasts; (c) and (f) were displayed in pseudocolor representing the ratio of emission intensities collected in optical windows between
540—580 and 430—495 nm. Reproduced from ref 441. Copyright 2011 American Chemical Society.

expensive and high-maintenance equipment, and the ineffective-
ness caused by antibiotic resistance.***~**!

Bacteria stink: i.e., the volatile organic compounds (VOCs)
produced from bacteria metabolism to which the mammalian
olfactory system is highly responsive. Consequently, an
experienced microbiologist can readily identify many bacteria
by smell. Applications of prior electronic nose technology,
however, have been limited by the low dimensionality of
traditional sensor arrays (e.g., conductive polymers or metal
oxides) and have achieved only modest success, even when
attempting to classify small numbers of bacterial variants.***~**

Disposable colorimetric sensor arrays have shown numerous
successful applications in the identification of microbial species,
especially for bacteria. Carey et al.**” used the 6 X 6 array to
recognize strains of human pathogenic bacteria grown on
standard agar based on specific VOCs produced from different
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bacterial cultures. Through monitoring bacterial growth during
10 h of incubation time, 10 strains of bacteria including
Enterococcus faecalis and Staphylococcus aureus as well as their
antibiotic-resistant strains were identified with 98.8% accuracy
out of 164 trials, as assessed by PCA (Figure 68), HCA, and
leave-one-out LDA using time-stacked data.

Very recently, Lim and co-workers have developed an 8 X 10
colorimetric sensor array for screening of other specific classes of
bacteria, **%~*> e.g., Yersinia pestis and Bacillus anthracis, that
feature on the Center for Disease Control and Prevention’s list
of potential biothreats.**® Via headspace gas analysis of bacteria
incubated in Petri dishes, the sensor array was capable of
distinguishing four different bacterial species and five strains of
Y. pestis and B. anthracis, with the detection limit as low as 8
CFU/plate for several strains (Figure 69). In addition to the
promising results demonstrated in the work, the authors also
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Figure 68. Three-dimensional PCA score plot of 10 bacterial strains
and controls. First three principal components account for only 79% of
the total variance; 164 trials in total. Color code: black, S. aureus; red,
MRSA; dark green, S. epidermidis; purple, S. sciuri; orange, P. aeruginosa;
white, E. faecium; light blue, E. faecalis; gray, E. faecalis VRE; yellow, E.
coli 25922; light green, E. coli 53502; dark blue, control. Reproduced
from ref 457. Copyright 2011 American Chemical Society.

Figure 69. (a) An 8 X 10 colorimetric sensor array comprising 80
different chemically responsive nanoporous dyes. (b) Species
concentration trajectories in LDA multidimensional space. All species
can be identified independent of inoculum concentration. Six control
trials (black) are located at the origin. Reproduced with permission
from ref 458. Copyright 2013 Lonsdale et al.

suggested several aspects of considerations for the future
improvement of array-based sensing techniques, in terms of
the array sensitivity, selectivity, incubation volume, data analysis,
and portability of the imaging device.

Rotello, Bunz, and co-workers employed a displacement assay
consisting of hydrophobically functionalized AuNPs and a
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conjugated polymer, poly(p-phenyleneethynylene) (PPE), to
identify several different bacteria in liquid growth media based
on the fluorescence quenching of fluorophores attached to gold
nanoparticles.*”> In this method, the negatively charged
conjugated polymer fluorophore is replaced by negatively
charged bacteria on the surface of positively charged AuNPs,
generating a differential fluorescence probe whose response is
dictated by the binding strength of each specific bacterium. By
diversifying the surface chemistry of AuNPs and the structure of
the conjugated polymer, they generated array-like data that
provided high dimensionality (albeit one solution at a time).
Nine bacterial species and three strains of E. coli were examined
in 64 trials with a 95% accuracy of classification using LDA.

Furthermore, Bunz and co-workers have very recently
reported a similar fluorescent array by combining PPE with
four variants of antimicrobial peptides (AMP), for the
identification of 14 different bacteria based on their Gram
status and genetic relationship (Figure 70);*** the array showed
100% discrimination accuracy using LDA with leave-one-out
cross-validation. This chemical sensor was also successfully
applied to target relevant microbes in urine and serum samples,
which enabled the discrimination of all bacteria at the upper
ranges of their clinically relevant concentrations.

Detection of infectious bacteria on biofilms is a great
challenge due to the complexity and heterogeneity of biofilm
matrices. Li et al.*** used a AuNP-based multichannel sensor for
the in situ, real-time monitoring of different biofilms based on
their physicochemical properties, as an important complement
to the currently available methods for early infection detection
and antibiotic treatment. Through the selective binding between
the AuNP—fluorescent protein conjugates and biofilms, the
authors were able to discriminate six types of bacterial biofilms
including two uropathogenic bacteria. The sensor array was
further proven effective in vitro, that it worked perfectly in a
mixed bacteria—mammalian cell coculture wound model.

The immobilized fluorescent bead strategy that Walt and co-
workers developed for use with microbead optical fiber bundles
has also been recently applied to bacterial identification. Fixed
arrays of this sort are difficult to reuse multiple times, in part due
to photobleaching. Walt and co-workers have attempted to
resolve this issue by using time-shared optical tweezers to
dynamically create sensing materials.**® The quantum-dot-
encoded microbead arrays were able to collect fluorescence
signals from biological samples in real time. A false color image
showing raw data output using this method is shown as Figure
71 for the detection and pattern discrimination of four different
strains of E. coli.

Especially for human immunocompromised patients, fungal
infections are a serious worldwide problem and have gained
recent notoriety following contamination of pharmaceuticals in
the compounding process. As with any rapidly growing cells,
fungi produce volatile organic compounds, and these provide an
alternative diagnostic approach for identification of fungal
strains. Suslick and co-workers made use of their disposable
colorimetric sensor array and demonstrated rapid differentiation
and identification of pathogenic fungi based on their metabolic
profiles of emitted volatiles.”®” Twelve human pathogenic fungal
strains grown on standard agar medium were tested (Figure 72).
All fungal strains gave unique composite responses within 3 h
and were correctly clustered using hierarchical cluster analysis.
Classification analysis using a tensor discriminant analysis,
which takes better advantage of the high dimensionality of the
sensor array data, gave a classification accuracy of 98% for 155
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Figure 70. (a) Structure of PPE and electrostatic complex formed between negatively charged PPE and positively charged AMP. (b) Two-dimensional
canonical score plot obtained from fluorescence response patterns. In the score plot, 95% confidence ellipses were depicted for the individual bacteria.

Reproduced with permission from ref 464. Copyright 2017 Wiley.

Figure 71. False color images of microbead array in response to four strains of E. coli: (a) and (e), strain 43888; (b) and (f), strain 43889; (c) and (g),
strain 43890; (d) and (h), strain 43894. Top row (a—d) are the encoding images showing the identity of the beads, while bottom row (e—h) are the
signaling images showing the intensity of responses to the bacteria. Adapted with permission from ref 466. Copyright 2013 Royal Society of Chemistry.

trials. The sensor array is also able to observe metabolic changes
in growth patterns upon the addition of fungicides, and this
provides a facile screening tool for determining fungicide
efficacy for various fungal strains in real time. Further work has
proven the utility of this technique for identification of clinically
important pathogenic yeasts in standard blood cultures.**®
5.2.5. Cancer and Disease Biomarkers. Optical array
sensing has begun to find applications in the area of cancer
diagnosis of biomarker detection.*'”***~*"! Different cell lines
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produce different types of VOCs as featured metabolites; this
applies to any rapidly growing cells, and in principle the breath
composition is consistent with the volatiles produced in the
body. Breath analysis has a long history as an underutilized
diagnostic approach;*®*’>*”* limitations in traditional analytical
tools that are insufficiently sensitive, selective, or inexpensive
have restricted the use of these methods in clinical or hospital
settings. Electronic noses have certainly been evaluated for
breath analysis, especially for diagnosis of lung cancer and of
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Figure 72. Classification analysis of colorimetric sensor array response to cultured pathogenic fungi. (A) Hierarchical cluster analysis dendrogram of
12 fungal strains and YPD medium background at 180 min with 2.4 X 10 colony forming units of inoculation; no errors in clustering were observed
among a total of 155 trials. (B) Scatter plot of the first two directions from the tensor discriminant analysis. Surprisingly good discrimination of the
fungal strains is achieved even with only two TDA directions, which account for only 18.2% of the total discriminant power. Reproduced with

permission from ref 467. Copyright 2014 Royal Society of Chemistry.

respiratory infections, albeit with inadequate success. The
prototype colorimetric sensor arrays developed by the Suslick
group for fungal*” and bacterial**’ identification have shown
some preliminary clinical success for breath diagnosis. Lim et
al.*”**”> designed a tuberculosis testing tool that incorporated a
73-indicator colorimetric sensor array for fingerprinting VOC
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signatures of human urine samples. Sensor array responses to 22
tuberculosis urine samples and the other 41 symptomatic
controls were collected under different sample treatment
conditions, which proved that basified condition was able to
provide the best accuracy of >85% sensitivity and >79%
specificity of all samples. The urine assay using a colorimetric
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sensor array offers a powerful tool for a quick and simple
diagnosis of tuberculosis in low resource settings.

Lung cancer detection via breath analysis using colorimetric
sensing techniques has also been elucidated by Mazzone et
al.*’®*’7 at the Cleveland Clinic with promising classification
results. The test revealed that, based on exhaled breath screening
of 229 study subjects (92 with lung cancer and 137 as controls),
lung cancer patients can be distinguished from control subjects
with high accuracy (C-statistic 0.889 for adenocarcinoma vs
squamous cell carcinoma), and the accuracy for identification of
lung cancer can be further improved by adjusting clinical and
breath predictors.*””

The direct analysis of nonvolatile cancer cells or disease
biomarkers in aqueous biological samples is also highly
desirable. In an entirely different approach to cell differentiation,
itis not surprising that different cell lines interact differently with
different nanoparticles”’®*”” and that those interactions are
strongly affected by the chemical nature of the nanoparticle
surfaces, particularly as biomolecules adsorb onto nanoparticle
surfaces forming a “protein corona”.***~**?

Taking advantage of interactions between polymers/AuNPs
and various biomolecules, the parallel soluble fluorescent
displacement assays developed by Rotello and co-work-
ers >4 for protein detection have also been extended to
identification of cancer cells. Very recently, they reported a
nanosensor using cell lysates to rapidly profile the tumor-
igenicity of cancer cells.””” In addition to the aforementioned
approach involving differential probes, this sensing platform
used a host—guest interaction between the macrocyclic
cucurbit[7]uril (CB[7]) and the ammonium head of gold
nanoparticles to build the second recognition receptor that
extends the number of dimensions within each sensor element
from three to six (Figure 73). The overall accuracy in

Figure 73. Construction of a six-channel sensor in a single well.
Quenched AuNP—fluorescent protein (BenzZNP—FP) conjugates serve
as differential probes for the detection of cell lysates, based on
fluorescence signal changes in three emission channels. CB[7] is then
added to the same well to gain three additional fluorescent channels
based on the interactions between the analytes and newly formed
composites incorporating CB[7]. Reproduced from ref 487. Copyright
2017 American Chemical Society.
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classification accordingly increased from 63% of using only
three channels of the composite without the supramolecular
assembly to 95% when taking all six channels into account
(Figure 74). More significantly, this method required the
minimal sample quantity of ~200 ng (~1000 cells) for analysis
and could become an ideal tool for microbiopsy-based cancer
diagnosis.

6. CONCLUSIONS AND FUTURE CHALLENGES

During the last decade, chemical sensing has witnessed rapid
development in both sensing materials and analytical
techniques. Array-based optical sensing has demonstrated its
usefulness in addressing a wide range of analytical challenges. By
using chemically diverse chemoresponsive dyes or biological
receptors in combination with chemometric analysis, arrays can
be designed to discriminate various structurally similar analytes
and analyte mixtures. While many biological systems employ a
lock-and-key method for molecular recognition (e.g., enzymes
and antibodies), which requires a highly specific receptor for
each substrate, this approach is not used by the olfactory system
and does not work for artificial olfaction. Using customized
receptors (biological or synthetic) is simply impractical for the
overwhelming number of volatiles and volatile mixtures that one
would like to detect. Instead, sensor arrays provide an alternative
means of creating specificity through pattern recognition of the
response of an array of highly cross-reactive sensors. With recent
advances in optical array sensing, sensitive and reliable
fingerprinting of both single compounds and complex mixtures
has become possible over a wide range of analyte types. Sensor
arrays comprising a number of different sensor elements have
been employed for detection of both gaseous and aqueous
samples. The primary feature of an advanced sensor array, as an
analogue to the mammalian nose, is that it gives a composite
response to mixtures, but one that provides discrimination even
between highly similar complex mixtures.

Another essential feature of colorimetric or fluorometric
sensor arrays is that they probe chemical properties of analytes,
rather than physical properties, giving highly discriminatory,
specific responses to an enormous range of analytes. The result is
high-dimensional data that cannot be reduced to just two or
three dominant coordinates. The advances in chemometric
analysis of high-dimensional data provide new methods for the
optimal use of high-dimensional sensor arrays. These develop-
ments parallel the advances in pattern recognition demanded by
the burgeoning fields of artificial intelligence and machine
learning.

Probing chemical properties for chemical sensing is a “good
news/bad news” story. The good news is that most analytes of
concern (e.g., toxic industrial chemicals) are, essentially by
definition, highly reactive and therefore readily detected, even at
sub parts per million concentration; this resolves some issues in
false positives associated with traditional electronic nose and
solid state chemical sensors. The bad news, nevertheless, is that
some targeted analytes are less reactive and could not reach ideal
sensitivity using chemical methods. One solution is to pretreat
the analyte stream to produce, for example, partial oxidation
products that are more reactive and more easily detectable by
cross-reactive sensors. More selective methods of “activating”
these analytes, especially in the presence of a considerable
concentration of interferents, would greatly improve the sensing
capability of current sensor arrays.

The primary limitation of array-based sensing, however, is that
it does not offer a component-by-component analysis for
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Figure 74. LDA classification of five human cancerous cell lines based on (a) only three channels of BenzZNP—FPs, (b) only three channels of
BenzNP—CBJ[7], and (c) the combinatory classification with all six channels. (d) Overall classification accuracy of three sensing systems. Reproduced

from ref 487. Copyright 2017 American Chemical Society.

composite mixtures. Most chemists naturally assume that the
goal with any complex mixture is to obtain a complete
quantitative analysis of each component, which, in some cases,
is difficult to be accomplished using either a colorimetric or
fluorometric sensor array. In practice, however, one seldom
really wants to know, for example, what the thousand different
components are in a cup of coffee.”*® What one often wants to
know is whether the coffee is roasted properly or burnt, its place
of origin, and other issues of quality control and quality
assurance: array-based sensing proves to be an excellent
technique for those goals.

The other great challenge of optical array sensing lies in its
performance in practical applications. Despite the success of
colorimetric or fluorometric array sensing achieved in controlled
laboratory environments, there are still challenges to overcome
before these methods become common in field use. In order to
create array-based assays that can accurately predict the identity
of unknown analytes, the response of unknown analytes to the
array should be reproducible; the system has to be able to match
responses from unknowns to responses from a training set of
analytes; disturbances from possible interferents should be
effectively eliminated. The development of portable, low-noise,
and accurate optical instrumentation with the capability of
onboard and real-time analysis has shown substantial progress
over the past few years and begins to match the increasing

pressure for real-world use.
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