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Exhaled Breath Analysis with a Colorimetric Sensor Array
for the Identification and Characterization of Lung Cancer
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Introduction: The pattern of exhaled breath volatile organic com-
pounds represents a metabolic biosignature with the potential to
identify and characterize lung cancer. Breath biosignature-based
classification of homogeneous subgroups of lung cancer may be
more accurate than a global breath signature. Combining breath
biosignatures with clinical risk factors may improve the accuracy of
the signature.
Objectives: To develop an exhaled breath biosignature of lung
cancer using a colorimetric sensor array and to determine the
accuracy of breath biosignatures of lung cancer characteristics with
and without the inclusion of clinical risk factors.
Methods: The exhaled breath of 229 study subjects, 92 with lung
cancer and 137 controls, was drawn across a colorimetric sensor
array. Logistic prediction models were developed and statistically
validated based on the color changes of the sensor. Age, sex,
smoking history, and chronic obstructive pulmonary disease were
incorporated in the prediction models.
Results: The validated prediction model of the combined breath and
clinical biosignature was moderately accurate at distinguishing lung
cancer from control subjects (C-statistic 0.811). The accuracy im-
proved when the model focused on only one histology (C-statistic
0.825–0.890). Individuals with different histologies could be accu-
rately distinguished from one another (C-statistic 0.864 for adeno-
carcinoma versus squamous cell carcinoma). Moderate accuracies
were noted for validated breath biosignatures of stage and survival
(C-statistic 0.785 and 0.693, respectively).

Conclusions: A colorimetric sensor array is capable of identifying
exhaled breath biosignatures of lung cancer. The accuracy of breath
biosignatures can be optimized by evaluating specific histologies
and incorporating clinical risk factors.
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The clinical evaluation and management of patients with
lung cancer would benefit from the development of ac-

curate, noninvasive, inexpensive biomarkers. Biomarkers ca-
pable of predicting the risk of developing lung cancer, iden-
tifying the presence of lung cancer, characterizing the nature
of the cancer, and predicting and monitoring the response to
therapy are being developed.1 These will lead to advances in
primary prevention, chemoprevention, lung cancer screening,
lung nodule management, lung cancer diagnosis, and the
personalization of therapeutic choices.

Exhaled breath is an intriguing source of potential
biomarkers of disease presence or activity. Volatile organic
compounds (VOCs) are present in the exhaled breath in low
concentrations. In principle, the composition of VOCs in the
exhaled breath reflects metabolic activity within the body.
Metabolic processes within the cells lead to the consumption
and production of VOCs. These metabolic byproducts can
circulate within the blood and transfer to the lungs where
they are exhaled from the body. Thus, alterations in the
body’s metabolic processes may lead to unique breath
VOC signatures.

There is evidence that lung cancer cells have unique
metabolic properties.2–8 Evidence from the analysis of cell
line headspace gas,9–12 and from the exhaled breath of lung
cancer patients, suggests that this disease-specific metabolism
can be detected as breath signatures of the presence of lung
cancer. The analysis of breath VOCs for lung cancer diagno-
sis has been performed with a variety of mass spectrometry
techniques9,13–21 and with various sensor arrays.16,22–27 Sen-
sor arrays do not identify the specific constituents of exhaled
breath; rather their output is the result of the interaction of the
entire composition of the breath contents with the sensor. One
such sensor device, called a colorimetric sensor array, is
composed of chromogenic reagents printed on a disposable
cartridge.28 The output from the sensor is a change in the
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colors of its elements. A previously reported study suggested
that an early version of this sensor system was moderately
accurate in identifying the subjects with lung cancer based on
their breath profile.22 Between that study and the study
reported here, minor improvements were made to the color-
imetric sensor platform, and the system was miniaturized.29

Lung cancer is a heterogeneous disease; thus, it is likely
that there is more than one distinct lung cancer breath
signature. Also, in other fields of lung cancer biomarker
development, the accuracy of clinical and molecular risk
predictors have been improved by combining the two ap-
proaches.30 The studies of breath analysis for lung cancer
identification reported to date have not attempted to develop
breath signatures related to the characteristics of the lung
cancer (e.g., histology) or incorporated features of the study
subjects into combined models. The aims of this study were
(a) to confirm the accuracy of a crude, portable colorimetric
sensor array system for the detection of a lung cancer breath
biosignature, (b) to determine the accuracy of breath biosig-
natures of lung cancer characteristics (histology, stage, and
survival), and (c) to determine the accuracy of breath biosig-
natures combined with relevant clinical variables.

MATERIALS AND METHODS

Study Design
This study was designed to determine whether the

responses of a colorimetric sensor array to the contents of
exhaled breath are capable of identifying and characterizing
lung cancer. Study subjects were recruited prospectively from
outpatient clinics at the Cleveland Clinic. Their breath was
sampled at a single point in time.

Patient Population
All the lung cancer study subjects had biopsy-proven,

untreated lung cancer. The control group consisted of indi-
viduals at a risk for developing lung cancer who were
enrolled in a lung cancer screening study (age 40–75 years,
15� pack-years of smoking, or 10� pack-years of smoking
with either chronic obstructive pulmonary disease [COPD] or

a family history of lung cancer), and individuals with inde-
terminate lung nodules. The nature of the lung nodules was
determined by biopsy or stability on computed tomography
surveillance with the length of follow-up determined by the
clinician following the patient. Subjects with a prior lung
cancer or other cancer within the past 5 years were excluded
from enrollment, as were those requiring continuous supple-
mental oxygen or receiving long-term immunosuppressive
therapies. Recent food intake or cigarette smoking did not
change a subject’s study eligibility. The study protocol was
approved by the Cleveland Clinic IRB, and all study subjects
signed informed consent.

Data collected on the lung cancer subjects included
demographic information, comorbid conditions (COPD was
based on a clinical label or patient report), medications, and
features of the cancer including the histology, stage, treat-
ment, and survival. Information about survival was obtained
through a review of the medical records, supplemented by the
social security death index. Data collected on the at risk
control group included demographic information, comorbid
conditions, and medications. Additional data collected on the
lung nodule control group included the size of the nodule,
how it was identified, and how it was evaluated.

Breath Sampling and Data Processing
All study subjects performed tidal breathing, inhaling

unfiltered air through their nose, and exhaling through their
mouth into disposable corrugated tubing for a total of 5
minutes. Unpublished analysis of the colorimetric sensor
responses suggested that equilibration of responses would be
reached within 5 minutes. The exhaled breath was drawn
across the sensor array at 200 ml/min by a pump placed
distal to the array. The sensor array was composed of 24
separate colorants (Figure 1). Images of the array were
taken at baseline and at 30-second intervals throughout
breath collection. Each image of the sensor was converted
to numerical values for changes in the red, green, and blue
spectrum of each colorant. A new sensor array was used
for each study subject. A separate array was exposed to

FIGURE 1. Image of the colori-
metric sensor used in this study.
Twenty-four chemically reactive
colorants are printed on a dispos-
able cartridge. The reactive colo-
rants used in the studied array are
listed as they appear on the car-
tridge. Exhaled breath is drawn
across the cartridge in the direction
shown.
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room air (200 ml/min for 5 minutes) for each study subject,
immediately before or after the subject’s breath test was
performed.

The Colorimetric Sensor Array
The colorimetric sensor array approach31 distinguishes

among analytes or complex mixtures of analytes by its
composite response; the array uses a diverse range of chem-
ically responsive dyes, whose colors depend on their chem-
ical environment. The design of the disposable colorimetric
sensor array used in this trial is based on the dye-analyte
interactions that are stronger than those that cause simple
physical adsorption. The selected chemically responsive dyes
fall into three classes (described in detail previously32,33): (1)
dyes containing metal ions (e.g., metalloporphyrins) that
respond to Lewis basicity (i.e., electron-pair donation and
metal-ion ligation), (2) pH indicators that respond to Brøn-
sted acidity/basicity (i.e., proton acidity and hydrogen bond-
ing), and (3) dyes with large permanent dipoles (e.g., vapo-
chromic or solvatochromic dyes) that respond to local
polarity. Therefore, this colorimetric sensor array is respon-
sive to the chemical reactivity of analytes rather than to their
effects on secondary physical properties (e.g., mass, conduc-
tivity, adsorption) as is generally the case with other elec-
tronic nose technology. The colorimetric sensor arrays gen-
erate high dimensional data (i.e., red, green, and blue color
changes for each dye; in these studies, 72 dimensional vec-
tors), which allows for facile discrimination among even very
complex mixtures.34 A picture of the array and list of the
chemical dyes are shown in Figure 1. The sensitivity of the
version of the colorimetric sensor array used in this study to
chemical classes varied with the particular compound. Many
relevant compounds were known to be detectable in the low
parts per million range. The sensitivity to mixtures of com-
pounds was less established.

Statistical Analysis
The breath biosignatures of the following groups were

compared:

1. Non-small cell carcinoma versus all controls.
2. Adenocarcinoma versus all controls.
3. Squamous cell carcinoma versus all controls.
4. Adenocarcinoma versus squamous cell carcinoma.
5. Small cell carcinoma versus all controls.
6. Small cell carcinoma versus non-small cell carcinoma.
7. Stage I and II non-small cell carcinoma versus stage III

and IV non-small cell carcinoma.
8. Survival �12 months for all lung cancers versus sur-

vival �12 months for all lung cancers.

It is very difficult to estimate sample sizes for logistic
models with multiple covariates as in this project, particularly
when the number of discriminatory variables is unknown
before the start of the project. To be comfortable that the
confidence boundary for the estimates of sensitivity were
within 10% of the stated value for the principal comparison
(non-small cell carcinoma versus all controls), the aim was to
recruit a minimum of 50 subjects in the non-small cell cancer
group and in the control group.

Four separate logistic prediction models were devel-
oped to distinguish between the groups of interest for each
specific question. Totally 24 (the number of colorants) �3
(changes in the red, green, and blue values) � 72 predictors
were incorporated in the first logistic regression model for
each specific question. A backwards step-down variable se-
lection procedure was then performed. Under this approach,
we started with fitting a model with all the variables of
interest. The least significant variable was dropped, so long as
it was not significant at our chosen critical level (the pre-
specified significant level was p � 0.05). We continued by
successively refitting reduced models and applying the same
rule until all remaining variables were statistically signifi-
cant.35 We also checked distributional assumptions of the
model to see whether there were outliers, the observations
that lie outside the overall pattern of the sample distribution.
A similar approach was taken for the second model, wherein
the 72 sensor predictors and 4 clinical predictors (age, sex,
smoking status, and COPD) were included in the variable
step-down procedure. In the third model, the four clinical
predictors were forced into the model that included variables
selected from the 72 breath predictors. The fourth model
included only the four clinical variables. We validated the
models statistically, using the bootstrapping method, and then
calibrated the discrimination ability.36 The accuracy of each
model is represented by the C-statistic for that model. The
C-statistic is the area under a receiver operating characteristic
curve, with 1.0 being an ideal test. Numerical data were
compared using t-tests, and categorical data were analyzed by
Pearson’s �2 test procedure.

RESULTS

Study Subjects
Two hundred twenty-nine subjects participated in this

study, 92 with lung cancer and 137 controls. Of the 137
control subjects, 67 were subjects enrolled in a lung cancer
screening trial, and 70 had indeterminate lung nodules (mean
diameter 11 mm). Subjects with lung cancer had a higher
mean age, lower portion of never smokers, and higher mean
pack-years of cigarette use (Table 1). Eighty-three of the 92
lung cancer subjects had non-small cell cancer, 50 of whom

TABLE 1. Study Subject Details

All Lung Cancer Control p

Subjects (n) 229 92 137

Mean age (yr) 62.9 68.9 58.9 �0.001

Sex

Female 115 43 72 0.42

Male 114 49 65

Smoking

C 53 25 28 0.006

F 129 58 71

N 44 9 35

Mean of pack-years 54 36 �0.001

COPD 8 8 0.43

COPD, chronic obstructive pulmonary disease; C, current; F, former; N, never.
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had an adenocarcinoma and 23 a squamous cell carcinoma
(Table 2). There was an equal distribution of stage I/II
non-small cell cancers37 and stage III/IV.38

Accuracy of Breath Biosignature Models
A series of breath biosignature models were developed

for specific questions related to the identification and char-
acterization of lung cancer. The groups compared for each
question and the parameters considered when building the
models are listed in the Materials and Methods section and in
Table 3. The validated models, shown in Table 3, had lower
accuracies then the initial models (mean decrease in C-sta-
tistic of 0.068). The models developed for the individual
histologies compared with controls had higher accuracies
than the model of the broader question of non-small cell
cancer compared with controls (Tables 3 and 4 and Figure 2).
The accuracies of the models comparing the presence of
cancer with controls were improved by including patient
characteristics in a combined model (mean increase in C-sta-
tistic of 0.096). The accuracies of the models comparing
features of the cancer (histology, stage, and survival) were
not influenced by including patient characteristics (mean
increase in C-statistic of 0.002).

DISCUSSION
This study verified the potential of a colorimetric sensor

array system to identify lung cancer breath biosignatures with
a moderate accuracy for the distinction of subjects with lung
cancer from a cohort of clinically relevant control subjects.
This study suggests that the accuracy of breath biosignatures
of specific lung cancer histologies is higher than that of a
global cancer versus no cancer signature. When distinguish-
ing patients with and without lung cancer, a signature that
combined breath and clinical predictors resulted in higher
accuracy than either alone. The results also suggest that
breath biosignatures can distinguish between lung cancers of
different histology and that characteristics of the lung cancer,
such as stage and survival, can be predicted with breath analysis.

The improved accuracy of a biomarker based on met-
abolic changes, obtained by attempting to refine the applica-
tion of the biomarker to a more homogeneous subgroup, is
not surprising. Differences in the characteristics of individu-

TABLE 2. Lung Cancer Features

Histology

Adenocarcinoma 50

Squamous cell 23

Large cell 3

Other non-small cell 7

Small cell 9

Stage

I 32

II 9

III 19

IV 23

TABLE 3. Accuracy of Statistically Validated Breath
Biosignature Models

Groups Compared (n) Model 1 Model 2 Model 3 Model 4

Non-small cell (83) Controls (137) 0.701 0.811 0.761 0.710

Adenocarcinoma (50) Controls (137) 0.784 0.747 0.825 0.695

Squamous cell (23) Controls (137) 0.708 0.841 0.849 0.768

Adenocarcinoma (50) Squamous
cell (22)

0.889 0.742 0.864 0.517

Small cell (9) Controls (137) 0.800 0.824 0.890 0.763

Small cell (9) Non-small
cell (83)

0.752 0.752 0.781 0.584

Stages I and II (41) Stages III and
IV (42)

0.792 0.793 0.784 0.460

Survival
�12 mo (24)

Survival
�12 mo (68)

0.768 0.761 0.770 0.576

The groups compared for each question are listed. This is followed by the C-statistic
(area under the receiver operating characteristic curve) for the statistically validated
models (model 1 � selected sensor parameters only, model 2 � selected sensor and
selected clinical parameters, model 3 � selected sensor parameters and all four clinical
parameters, model 4 � all four clinical parameters only).

TABLE 4. Representative Sensitivity and Specificity of the
Most Accurate Model for Each Study Question

Groups Compared (n) Model Sensitivity Specificity

Non-small cell (83) Controls (137) 2 70 86

Adenocarcinoma (50) Controls (137) 3 80 86

Squamous cell (23) Controls (137) 3 91 73

Adenocarcinoma (50) Squamous cell (22) 1 90 83

Small cell (9) Controls (137) 3 89 85

Small cell (9) Non-small cell (83) 3 78 95

Stages I and II (41) Stages III and
IV (42)

2 81 73

Survival
�12 mo (24)

Survival
�12 mo (68)

3 70 86

FIGURE 2. Receiver operating characteristic curves for the
most accurate validated models comparing non-small cell
carcinoma to controls and for the individual non-small cell
carcinoma histologies to controls.
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als who develop specific lung cancer histologies, and differ-
ences in their clinical and imaging presentations, are well
established. Recently, differences in the response to specific
treatments between histologic groups,39 and the presence of
unique molecular changes capable of further defining the
nature of these groups,40 have been recognized. Thus, it is
reasonable to speculate that metabolic differences exist be-
tween the cancer histologies that could lead to distinct VOC
patterns in the breath. The implication of this finding for lung
cancer breath test development is that a large number of
well-characterized lung cancer subjects’ breath should be
analyzed with biosignatures developed for specific patient
subgroups. To maximize the accuracy of the broad question,
looking for the presence of lung cancer in one individual,
would thus require sequential decision making with analysis
of a subjects’ breath profile compared with a series of
subgroup-specific sensor profiles. The additional implication
is that a breath biosignature may tell us more about the cancer
than just whether or not it is present.

The ability to characterize a cancer’s stage or prognosis
with a metabolic biosignature is also not surprising. Rapid
growth and widespread disease are likely to be characterized
by distinct or magnified metabolic alterations. If these find-
ings are supported by future, larger and more refined trials,
this would imply that breath biosignatures may be capable of
influencing decisions about the need for additional testing,
the aggressiveness and type of treatment to offer, and be
capable of monitoring the response to therapy.

As in other areas of biomarker development, the com-
bination of clinical variables with molecular predictors was
shown to improve overall test accuracy.30 Future breath test
development should determine which clinical variables are
independent of the breath signature and incorporate those that
are complimentary to the overall accuracy of the test.

This study has several limitations related to its design
and other limitations based on the nature of cross-reactive
chemical sensors. The most obvious limitation relates to the
breath collection technique. Breath was sampled in a con-
trolled environment with coaching about the pace of breath-
ing. All subjects underwent the same sampling procedure.
However, attempts to isolate alveolar fractions of the breath
and to objectively measure or control the flow rate of exhaled
breath were not used. These factors are known to influence
the relative composition of breath analytes.39,40 In addition,
neither the influence of diet41 nor the reproducibility of an
individual subject’s breath signature was studied. Ambient air
contains many volatiles that are present in the breath. Al-
though breath testing was performed in a very limited number
of locations without systematic selection of location based on
disease, the influence of ambient volatiles cannot be ig-
nored.42 To this end, models were developed using the dif-
ference between the sensor response to each subject’s breath
and the sensor response to ambient air. The models developed
after correcting for ambient air were similar to those reported
(data not shown). This method of correcting for the influence
of exogenous volatiles, termed an alveolar gradient, is not
likely to be appropriate for cross-responsive sensors where
the influence on sensor response of a given element in the

mixture is not linear. An alternative method to control for this
influence is inhaling pure or filtered air for a period of time.
Even this is not ideal as it is not possible to eliminate extremely
low concentrations of potentially influential volatiles, and the
time required for exogenous volatiles to leave the body is highly
variable making the testing less practical. There were only minor
improvements made to the colorimetric sensor array system
used in this study compared with the first lung cancer study with
this technology.29 The sensor used in this study was limited in its
ability to detect all potentially relevant compounds at the very
low concentrations found in the breath. Finally, a robust statis-
tically validated model is reported, but validation on an inde-
pendent cohort of subjects was not performed. Given these
limitations, the results of this study should be interpreted as
promising and able to provide direction for the design of future
trials, but not as a definitive statement about the accuracy of
breath testing with a colorimetric sensor array for lung cancer. It
is reassuring that the accuracy of the breath biosignature for the
broad question of lung cancer versus control reported here was
similar to the prior study using this technology.

Another frequently described limitation of cross-reac-
tive sensor systems is that they are not able to identify the
individual components of a breath mixture. Instead, their re-
sponse is representative of the entire mixture of breath chemi-
cals. The strengths of these sensors are that they are capable of
identifying a multidimensional discriminatory pattern of breath
analytes, can be relatively inexpensive, can be used as a bedside
test, and will not require advanced training for their use or
interpretation. The limitation is that they cannot satisfy the need
to explain the nature and origin of the breath analytes. Many
complimentary technologies (gas chromatography-mass spec-
trometry, proton transfer reaction mass spectrometry, and ion
mobility spectrometry) are being used in an effort to identify the
nature of these compounds.9,13–21 These technologies are more
difficult to translate into inexpensive bedside tests. Acceptance
of breath testing by the scientific and clinical communities will
require the combination of advances in breath testing science
provided by all methods of analysis.

Since this study was completed, a number of funda-
mental advances in the colorimetric sensor array technology
have occurred.32,33 The most recent generation of colorimet-
ric sensors uses robotic printing of reactive pigments in place
of dyes, created by immobilizing chromogenic reagents in a
nanoporous maxtrix of organically modified siloxanes. The
resulting nanoporous matrix has far greater surface area for
reactions to occur, dramatically improving the sensitivity of
the sensor to all classes of relevant VOCs. These sensitivities
have been further improved by imaging the sensor with
enhanced optics and by extending the array from the 24
indicators used in the prior study to well over 100. Finally, a
dedication to following principles of breath collection and
delivery will allow us to determine the true potential of this
biomarker moving forward. Additional work with complemen-
tary systems, capable of identifying the chemical composition of
the unique breath constituents, will help us to discover the origin
of the discriminatory VOCs, their movement into the breath, and
the pathogenic processes that lead to the identified metabolic
changes. This knowledge may help to improve our understand-
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ing of the nature of lung cancer and provide insights into novel
methods of prevention and treatment.

In summary, the analysis of metabolic biomarkers in
the exhaled breath of defined subgroups of lung cancer
subjects with a colorimetric sensor array may allow us to
identify and characterize lung cancer. The accuracy for iden-
tifying lung cancer can be optimized by combining clinical
and breath predictors.
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